Skip to main content
Log in

The Effect of Fe-Rich Intermetallics on the Weibull Distribution of Tensile Properties in a Cast Al-5 Pct Si-3 Pct Cu-1 Pct Fe-0.3 Pct Mg Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A comparison was made between the tensile properties of an Al-5 pct Si-3 pct Cu-1 pct Fe-0.3 pct Mg (319-type) alloy in the as-cast condition. The alloy was either unmodified or modified with Mn or Sr. The additions of 0.6 wt pct Mn, or 0.9 wt pct Mn, or 300 ppm Sr were made. All modifying additions increased the average and decreased the scatter in tensile strength, and increased elongation, with the Sr addition being most effective among the three. Fractographic examinations showed that the β phase, the polyhedral α phase, and porosity appear to be the main defects responsible for failure. The distribution of tensile strength has been quantitatively assessed using both two- and three-parameter Weibull distribution functions. In the two-parameter Weibull analysis, the high Weibull modulus (46) achieved by Sr modification is due to its binary effect on eutectic silicon and β platelets. Reservations about potentially misleading implications of the two-parameter approach are explored. The three-parameter Weibull analysis provides new information. In particular, minimum values of strength below which the material is extremely unlikely to fail are found. These values again show the clear benefit of Sr addition. The results are explained by the effects of modifying agents on the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.R. Green, J. Campbell: Mater. Sci. Eng. A, 1993, A137: 261–66

    Google Scholar 

  2. G.E. Byczynski and J. Campbell: in Advances in Aluminum Casting Technology II, M. Tiryakioğlu and J. Campbell, eds., ASM INTERNATIONAL, Materials Park, OH, 2002, pp. 65–74

  3. A.M. Samuel, F.H. Samuel, H.W. Doty: J. Mater. Sci., 1996, 31:5529–39

    Article  CAS  Google Scholar 

  4. A.M. Samuel, A. Pennors, C. Villeneuve, F.H. Samuel, H.W. Doty, S. Valtierra: Int. J. Cast Met. Res., 2000, 13:231–53

    CAS  Google Scholar 

  5. A.M. Samuel, F.H. Samuel, C. Villeneuve, H.W. Doty, S. Valtierra: Int. J. Cast Met. Res., 2001, 14:97–120

    CAS  Google Scholar 

  6. J. Campbell: Castings, 2nd ed., Butterworth Heinemann, Oxford, United Kingdom, 2003, pp. 149–56

  7. X. Cao, J. Campbell: Metall. Mater. Trans. A, 2003, 34A:1409–20

    Article  CAS  Google Scholar 

  8. X. Cao, J. Campbell: Metall. Mater. Trans. A, 2004, 35A:1425–35

    Article  CAS  Google Scholar 

  9. X. Cao, J. Campbell: Int. J. Cast Met. Res., 2000, 13:175–84

    CAS  Google Scholar 

  10. L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra: J. Mater. Sci., 2003, 38:1255–67

    Article  CAS  Google Scholar 

  11. M. Mahta, M. Emamy, A. Daman, A. Keyvani, J. Campbell, Int. J. Cast Met. Res., 2005, 18:73–79

    Article  CAS  Google Scholar 

  12. P.N. Crepeau: AFS Trans., 1995, 103:361–66

    CAS  Google Scholar 

  13. S.G. Shabestari, J.E. Gruzleski: Metall. Mater. Trans. A, 1995, 26A:999–1006

    CAS  Google Scholar 

  14. D.A. Granger: AFS Trans., 1991, 99:379.

    CAS  Google Scholar 

  15. L.A. Narayanan, F.H. Samuel, J.E. Gruzleski: Metall. Mater. Trans. A, 1994, 25A:1761–73

    CAS  Google Scholar 

  16. H. de la Sablonière, F.H. Samuel: Int. J. Cast Met. Res., 1996, 9:195–211

    Google Scholar 

  17. C.H. Cáceres, I.L. Svensson, J.A. Taylor: Int. J. Cast Met. Res., 2003, 15:531–43

    Google Scholar 

  18. A. Couture: AFS Int. Cast Met. J., 1981, 6:9–17.

    Google Scholar 

  19. Y.L. Liu, S.B. Kang, H.W. Kim: Mater. Lett., 1999, 41:267–72

    Article  CAS  Google Scholar 

  20. E.A. DeBartolo, B.M. Hillberry: Int. J. Fatigue, 2001, 23:s79–s86

    Article  CAS  Google Scholar 

  21. D.L. Colwell, R.J. Kissling: AFS Trans., 1961, 69:610–15

    Google Scholar 

  22. A.N. Lakshmanan, S.G. Shabestari, J.E. Gruzleski: Z. Metallkd., 1995, 86:457–64

    CAS  Google Scholar 

  23. J. Gobrecht: Giesserei, 1976, 63:558–61

    CAS  Google Scholar 

  24. L.R. Morris and F.B. Miners: U.S. Patent No. 3,926,690, 1975

  25. F. Paray, J.E. Gruzleski, B. Kulunk, M.H. Mulazimoğlu, A. Zaluska, and D. Zuliani: Light Metals, TMS, Warrendale, PA, 1996, pp. 707–11

  26. M.H. Mulazimoğlu, A. Zaluska, J.E. Gruzleski, F. Paray: Metall. Mater. Trans. A, 1996, 27A:929–36

    Google Scholar 

  27. F.H. Samuel, G. Pucella, C. Villeneuve, A.M. Samuel, H.W. Doty, S. Valtierra: Int. J. Cast Met. Res., 1999, 12:197–210

    CAS  Google Scholar 

  28. A.M. Samuel, F.H. Samuel: Int. J. Cast Met. Res., 1997, 10:147–57

    CAS  Google Scholar 

  29. F.H. Samuel, P. Oullet, A.M. Samuel, H.W. Doty: Metall. Mater. Trans A., 1998, 29A:2871–84

    Article  CAS  Google Scholar 

  30. P. Ashtari, H. Tezuka, T. Sato: Mater. Trans., 2003, 44:2611–16

    Article  CAS  Google Scholar 

  31. W. Weibull: J. Appl. Mech., 1951, 8:293–99

    Google Scholar 

  32. D.C. Montgomery: Design and Analysis of Experiments, 6th ed., Wiley, New York, NY, 2005, pp. 96–97

    Google Scholar 

  33. M.A. Stephens: J. Am. Stat. Assoc., 1974, 69:730–37

    Article  Google Scholar 

  34. J. Campbell: Metall. Mater. Trans B., 2006, 37B:857–63

    CAS  Google Scholar 

  35. L. Backerud, G. Chai, and J. Tamminen: Solidification and Characteristics of Aluminum Alloys, vol. 2, Foundry Alloys, American Foundrymen’s Society, Des Plaines, IL, 1990, pp. 71–84.

  36. S.M. Miresmaeili, J. Campbell, S.G. Shabestari, S.M.A. Boutorabi: Metall. Mater. Trans. A, 2005, 36A:2341–49

    Article  CAS  Google Scholar 

  37. X. Cao, J. Campbell: Mater. Sci. Technol., 2004, 20:514–20

    Article  CAS  Google Scholar 

  38. H. Iwahori, H. Takamiya, K. Yonekura, Y. Yamamoto, M. Nakamura: Imono, 1988, 60:590–95

    CAS  Google Scholar 

  39. T.T. Shih: Eng. Fract. Mech., 1980, 13:257–71

    Article  CAS  Google Scholar 

  40. J. Mi, R.A. Harding, J. Campbell: Intl. J. Cast Met. Res., 2002, 14:325–34

    CAS  Google Scholar 

  41. S.L. Fok, B.C. Mitchell, J. Smart, B.J. Marsden: Eng. Fract. Mech., 2001, 68:1171–79

    Article  Google Scholar 

  42. Military Handbook 5F: Metallic Materials and Elements for Aerospace Vehicle Structures, Department of Defense, Washington DC (Nov. 1990), pp. 9.16–9.20

Download references

Acknowledgments

Four of the authors (HZ, ME, AR, and MM) express their appreciation to the School of Metallurgy and Materials, University of Tehran, for providing the financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tiryakioğlu.

Additional information

Manuscript submitted: April 25, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahedi, H., Emamy, M., Razaghian, A. et al. The Effect of Fe-Rich Intermetallics on the Weibull Distribution of Tensile Properties in a Cast Al-5 Pct Si-3 Pct Cu-1 Pct Fe-0.3 Pct Mg Alloy. Metall Mater Trans A 38, 659–670 (2007). https://doi.org/10.1007/s11661-006-9068-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-9068-3

Keywords

Navigation