Skip to main content
Log in

Starch Consolidation as a New Process for Manufacturing Powder Metallurgy High-Speed Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The development of a new method called “starch consolidation,” suitable for the production of powder metallurgy (P/M) high-speed steel (HSS) components has been studied. Samples have been consolidated using 1.5, 3.5, and 5vol pct starch and up to 60vol pct powder. The high solid loading was achieved by stabilizing the repulsive forces with a small addition (0.01wt pct) of a dispersant (polyacrylic acid) that resulted in accurate fluidity and consolidation of the prepared slurries. After shaping of the samples, the bending strength of the green bodies was evaluated. Debinding cycles were optimized by comparing carbon and oxygen content in argon, in N2-5H2, and in pure hydrogen. The three atmospheres showed no significant differences in carbon elimination. To determine the influence of H2 in a nitrogen-rich atmosphere during sintering, tests were performed at 1230°C in a N2-5H2 and in a nitrogen atmosphere. Pure nitrogen resulted in a microstructure formed by smaller carbides. Heat treatments were performed on the samples with the compositions that gave the best combination of properties. A hardness of 800HV and a bending strength of 1475MPa were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig.12
Fig.13

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. R.M. German, A. Bose: Injection Moulding of Metals and Ceramics, MPIF, Princeton, NJ, 1997

    Google Scholar 

  2. J.M. Torralba, J.M. Ruiz-Román, L.E.G. Cambronero, J.M. Ruiz-Prieto, M. Gutiérrez-Stampa: J. Mater. Proc. Technol., 1997, vol. 64, pp. 387–95

    Article  Google Scholar 

  3. Z.Y. Liu, N.H. Loh, K.A. Khor, S.B. Tor: Mater. Sci. Eng A., 2000, vol. 293, pp. 46–55.

    Article  Google Scholar 

  4. L.M. Rodríguez-Lorenzo, M. Vallet-Regí, J.M.F. Ferreira: J. Biomed. Mater. Res., 2002, vol. 60, pp. 232–40

    Article  CAS  Google Scholar 

  5. A.F. Lemos, J.M.F. Ferreira: Mater. Sci. Eng. C, 2000, vol. 11, pp. 35–40

    Article  Google Scholar 

  6. H.M. Alves, G. Tari, A.T. Fonseca, J.M.F. Ferreira: Mater. Res. Bull., 1998, vol. 33, pp. 1439–48

    Article  CAS  Google Scholar 

  7. M.E. Bowden, M.S. Rippey: Key Eng. Mater., 2002, vols. 206–213, pp. 1957–60

    Article  Google Scholar 

  8. E. Týnová, W. Pabst, E. Gregorová, J. Havrda: Key Eng. Mater., 2002, vol. 206–213, pp. 1969–72

    Google Scholar 

  9. O. Lyckfeldt, J.M.F. Ferreira: J. Eur. Ceram. Soc., 1998, vol. 18, pp. 131–40

    Article  CAS  Google Scholar 

  10. O. Lyckfeldt, K. Lindqvist, and L. Palmqvist: Ceramic Development, Programme Research, Swedish Ceramic Institute, 1997–1999

  11. O. Lyckfeldt S. Magalhaes L. Nyborg, and E. Carlström: Proc. 1998 PM World Congr., EPMA, Shrewsbury, United Kingdom, 1999, vol. 3, pp. 308–13

  12. O. Lyckfeldt, L.O. Nordberg, and L. Nyborg: Proc. 2000 PM World Congr., EPMA, Kyoto, 2001, vol. 2, pp. 810–13

  13. P. Romano: Ph.D. Thesis, Universidad Carlos III de Madrid, Madrid, 2003 (in Spanish)

  14. P. Romano, O. Lyckfeldt, N. Candela, F. Velasco: J. Mater. Proc. Technol., 2003, vols. 143–144, pp. 752–57

    Article  CAS  Google Scholar 

  15. P. Romano, F.J. Velasco, J.M. Torralba, N. Candela: Mater. Sci. Eng. A, 2006, vol. 419, pp. 1–7

    Article  CAS  Google Scholar 

  16. O. Lyckfeldt: “Alternative Forming Methods,” Report of Swedish Ceramic Institute, 2001

  17. N.J.E. Adkins, G.P. Yiasemides: Adv. Powder Metall. Particulate Mater., 1992, vol. 7, pp. 201–14

    Google Scholar 

  18. L. Nyborg, E. Carlström, A. Warren, H. Bertilsson: Powder Metall., 1998, vol. 41 (1), pp. 41–45

    CAS  Google Scholar 

  19. P. Romano, O. Lyckfeldt, W. Khraisat: Powder Metall., 2005, vol. 48 (2), pp. 156–62.

    Article  CAS  Google Scholar 

  20. R. M. German: Adv. Powder Metall., 1989, vol. 3, p. 51

    CAS  Google Scholar 

  21. R.M. German: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1153–67

    Google Scholar 

  22. J.R. Davis: ASM Handbook, ASM, Materials Park, OH, 1998, vol. 7, pp. 489–95

  23. S. Jauregui, F. Fernandez, R.H. Palma, V. Martinez, J.J. Urcola: Metall. Trans. A, 1992, vol. 23A, pp. 389–400

    Google Scholar 

  24. C.S. Wright, B. Ogel: Powder Metall., 1993, vol. 36 (3), pp. 213–19

    CAS  Google Scholar 

  25. C.S. Wright, B. Ogel, F. Lemoisson, Y. Bienvenu: Powder Metall., 1995, vol. 38 (3), pp. 221–29

    CAS  Google Scholar 

  26. C.S. Wright, A.S. Wronski, I. Iturriza: Mater. Sci. Technol., 2000, vol. 16, pp. 945–57.

    CAS  Google Scholar 

  27. I. Aguirre, S. Giménez, T. Gómez-Acebo, S. Talacchia, and I. Iturriza: Powder Metall., 2001, vol. 44, pp. 211–20

    Article  CAS  Google Scholar 

  28. G. Hoyle: High Speed Steels, Butterworth & Co., London, 1988.

    Google Scholar 

  29. G.S. Steven, J.J. Hauser, T.A. Neumeyer, J.M. Capenos: Trans. ASM, 1965, vol. 62, pp. 180–94

    Google Scholar 

  30. I.W. Cottrell, K.S. Kang, and P. Kovacs: Handbook of Water-Soluble Gums and Resins, McGraw-Hill, New York, NY, 1979, ch. 24

  31. ISO 3325, 1996

  32. H.H. Angermann, O. van der Biest: Int. J. Powder Metall., 1993, vol. 29, pp. 239–50.

    CAS  Google Scholar 

  33. C.S. Wright, M. Youseffi, A.S. Wronski, I. Ansara, M. Durand Charre, J. Mascarenhas, M.M. Oliveira, F. Lemoisson, and Y. Bienvenu: Powder Metall., 1999, vol. 42, pp. 131–45

    Article  CAS  Google Scholar 

  34. D. Peña: Análisis de Datos Multivalentes, McGraw-Hill/Interamericana de España S.A., 2002 (in Spanish)

Download references

Acknowledgments

The authors acknowledge the financial support from the Spanish Education Ministry to P. Romano. Thanks are extended to TraterIber S.A. (Spain), for conducting the heat treatments, and to Mr. O. Lyckfeldt, the Swedish Ceramic Institute (Sweden), and Dr. Yang Yu, Höganäs AB (Sweden), for scientific cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Romano.

Additional information

Manuscript submitted May 24,2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, P., Velasco, F. & Torralba, J. Starch Consolidation as a New Process for Manufacturing Powder Metallurgy High-Speed Steels. Metall Mater Trans A 38, 159–168 (2007). https://doi.org/10.1007/s11661-006-9037-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-9037-x

Keywords

Navigation