Skip to main content
Log in

Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-22Al-26Nb (At. Pct) and Ti-22Al-26Nb-5B (At. Pct)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of the addition of 5 at. pct boron on the microstructure and creep behavior of a nominally Ti-22Al-26Nb (at. pct) alloy was investigated. The boron-modified alloy contained boride needles enriched in titanium and niobium, and because to these borides, this material was considered to be a discontinuously reinforced metal matrix composite. These needle-shaped borides made up to 2 pct of the volume and were up to 158-μm long and 22-μm wide. The effect of boron on the mechanical properties was evaluated through in-situ creep testing and tensile testing at room temperature (RT) and 650 °C. Overall, the addition of 5 at. pct boron proved to be detrimental to the tensile and creep behavior. The composite exhibited a brittle failure and lower elongations-to-failure than the monolithic material. The in-situ tensile and creep experiments revealed that the deformation process initiated in the boride needles, which cracked extensively, and significantly greater primary creep strains and creep rates were exhibited by the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. Tamirisakandala S., Bhat R.B., Tiley J.S., Miracle D.B. (2005) Scripta Mater. 53: 1421–26

    Article  CAS  Google Scholar 

  2. Gorsse S., Miracle D.B. (2006) Acta Mater. 51:2427–42

    Article  CAS  Google Scholar 

  3. Boehlert C.J., Cowen C.J., Tamirisakandala S., McEldowney D.J., Miracle D.B. (2006) Scripta Mater. 55:465–68

    Article  CAS  Google Scholar 

  4. Boehlert C.J., Majumdar B.S., Seetharaman V., Miracle D.B. (1999) Metall. Trans. A 30A: 2305–23

    Article  CAS  Google Scholar 

  5. Cowen C.J., Boehlert C.J. (2006) Phil. Mag. 86: 99–124

    Article  CAS  Google Scholar 

  6. Kestner-Weykamp H.T., Ward C.W., Broderick T.F., Kaufman M.J. (1989) Scripta Metall. 23: 1697–1702

    Article  CAS  Google Scholar 

  7. Bendersky L.A., Boettinger W.J., Roytburd A. (1991) Acta Metall. Mater. 39: 1959–69

    Article  CAS  Google Scholar 

  8. C.G. Rhodes, J.A. Graves, P.R. Smith, and M.R. James: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 45-52.

  9. Mendiratta M.G., Lipsitt H.A. (1980) J. Mater. Sci. 15:2985

    Article  CAS  Google Scholar 

  10. Malakondaiah G., Rao P.R. (1981) Acta Metall. 29:1263

    Article  CAS  Google Scholar 

  11. Mishra R.S., Banerjee D. (1990) Mater. Sci. Eng. A. 130:151–64

    Article  Google Scholar 

  12. H. Conrad, M. Doner, and B. DeMeester: in Titanium Science and Technology, R.I. Jaffee and H.M. Burte, eds., Plenum, New York, NY, 1973, p. 969.

  13. Nandy T.K., Mishra R.S., Banerjee D. (1993) Scripta Metall. Mater. 28: 569–74

    Article  CAS  Google Scholar 

  14. Nandy T.K., Banerjee D. (2000) Intermetallics 8: 915–28

    Article  CAS  Google Scholar 

  15. Boehlert C.J., Miracle D.B. (1999) Metall. Mater. Trans. A 30A:2349–67

    Article  CAS  Google Scholar 

  16. Smith P.R., Rosenberger A., Shepard M.J., Wheeler R. (2000) J. Mater. Sci. 35: 3169–79

    Article  CAS  Google Scholar 

  17. Smith P.R., Rosenberger A., Shepard M.J. (1999) Scripta Mater. 41: 221–28

    Article  CAS  Google Scholar 

  18. Rhodes C.G., Smith P.R., Hanusiak W.H., Shepard M.J. (2000) Metall. Mater. Trans. A 31:2931–41

    Google Scholar 

  19. R.G. Rowe: in Titanium ’92 Science and Technology, F.H. Froes and I.L. Caplan, eds., TMS, Warrendale, PA, 1993, p. 343

  20. R.G. Rowe and M. Larsen: in Titanium ‘95, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The University Press, Cambridge, United Kingdom, 1996, pp. 364-71

  21. Boehlert C.J., Miracle D.B. (1999) Metall. Mater. Trans. A 30A: 2349–67

    Article  CAS  Google Scholar 

  22. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, and R. Wheeler: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1997, pp. 795-804

  23. Tang F., Nakazawa S., Hagiwara M. (2001) Mater. Sci. Eng. A 315: 147–52

    Article  Google Scholar 

  24. Hagiwara M., Emura S., Araoka A. (2003) Mater. Sci. Forum 426–432: 1715–20

    Google Scholar 

  25. Yang S.J., Emura S., Hagiwara M., Nam S.W. (2003) Scripta Mater. 49: 897–902

    Article  CAS  Google Scholar 

  26. Hagiwara M., Emura S., Araoka A., Kong B.O., Tang F. (2003) Met. Mater. Int. 9: 265–72

    Article  CAS  Google Scholar 

  27. Emura S., Yang S.J., Hagiwara M. (2004) Metall. Mater. Trans. A 35A: 2971–79

    Article  CAS  Google Scholar 

  28. C.J. Cowen and C.J. Boehlert: Advanced Materials Research, Trans Tech Publications Ltd, Switzerland, Part 1, 2007, vol. 15–17, pp. 976-981.

  29. Standard Test Methods for Determining Average Grain Size, ASTM Designation E112-96e3, ASTM, West Conshohocken, PA

  30. Panda K.B. Ravi Chandran K.S. (2006) Acta Mater. 54: 1641–57

    Article  CAS  Google Scholar 

  31. D.R. Trinkle: Scripta Materialia, 2007, vol. 56, pp. 273–276.

  32. C.J. Cowen, PhD Thesis, Michigan State University, 2006.

  33. Boehlert C.J. (2001) Metall. Mater. Trans. A 32A: 1977–88

    Article  CAS  Google Scholar 

  34. Gogia A.K., Nandy T.K., Muraleedharan K., Banerjee D. (1992) Mater. Sci. Eng. A 159: 73–86

    Article  Google Scholar 

  35. Boehlert C.J., Majumdar B.S., Eylon D. (1997) Key Eng. Mater. 127–131: 843–50

    Article  Google Scholar 

  36. C.F. Yolton and J.H. Moll: in Titanium ‘95, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The University Press, Cambridge, United Kingdom, 1996, p. 2755

  37. M. Hagiwara and S. Emura: Workshop on Titanium Alloys Modified with Boron, Dayton, OH, Oct. 11–13, 2005

Download references

Acknowledgments

This work was partially supported by the National Science Foundation through Grant Nos. DMR-0533954 and DMR-030992 and by an American Society of Engineering Education (ASEE) Air Force Research Laboratory (AFRL) Summer Faculty Fellowship (Contract No. F49620-02-C-0015) to CJB. The authors are grateful to Sesh Tamirisakandala, Daniel Miracle, and Fred Yolton for helpful assistance and guidance and Gerald Wynick and Ward Votava for their technical assistance with the EMP analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.J. Cowen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowen, C., Boehlert, C. Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-22Al-26Nb (At. Pct) and Ti-22Al-26Nb-5B (At. Pct) . Metall Mater Trans A 38, 26–34 (2007). https://doi.org/10.1007/s11661-006-9004-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-9004-6

Keywords

Navigation