Skip to main content

Advertisement

Log in

Grindability of Ti alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The grindability of Ti-based alloys was analyzed by considering the fracture behavior of individual alloys in response to the stress field of a grinding wheel. First, the stress field under a grinding wheel was computed by treating the grinding wheel as a cylindrical disk with a flat region acting on a flat substrate. The initiation and propagation of microcracks in the substrate was then examined on the basis of the contact stress field and one of two fracture criteria: (1) a critical stress criterion for the onset of cleavage crack initiation, and (2) a critical stress intensity factor criterion for the initiation and propagation of shear cracks. Grindability was computed as a function of grinding speed and microstructure for several Ti-based cast alloys containing α, α + β, or β microstructure with or without the intermetallic precipitates. Model predictions indicated that the grindability of Ti alloys increases with decreasing fracture toughness or tensile ductility. The theoretical results are compared against experimental data in the literature to elucidate the roles of microstructure in grindability. The comparison revealed that alloying addition that leads to the formation of brittle intermetallics enhances grindability by reducing fracture toughness, tensile ductility, and the resistance to crack initiation and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Okabe, C. Ohkubo, I. Watanabe, O. Okuno, and Y. Takada: JOM, 1998, vol. 50 (9), pp. 24–29.

    Article  CAS  Google Scholar 

  2. T. Okabe, M. Kikuchi, C. Ohkubo, M. Koike, O. Okuno, and Y. Oda: JOM, 2004, vol. 56 (2), pp. 46–48.

    Article  CAS  Google Scholar 

  3. T. Okabe, M. Kikuchi, C. Ohkubo, M. Koike, O. Okuno, and Y. Oda: Cost-Affordable Titanium, edited by F.H. Froes, M. Ashraf, and D. Fray, TMS, Warrendale, PA, 2004, pp. 177–81.

    Google Scholar 

  4. M. Takahashi, M. Kikuchi, Y. Takada, and O. Okuno: Dent. Mater. J., 2002, vol. 21 (3), pp. 270–80.

    Google Scholar 

  5. T. Aoki, I.C.I. Okafor, I. Watanabe, M. Hattori, Y. Oda, and T. Okabe: J. Oral Rehabil., 2004, vol. 31, pp. 1109–14.

    Article  CAS  Google Scholar 

  6. M. Takahashi, M. Kikuchi, and O. Okuno: Dent. Mater. J., 2004, vol. 23 (2), pp. 203–10.

    Google Scholar 

  7. M. Koike, Q. Guo, M. Brezner, H. Fujii, and T. Okabe: J. ASTM Int., 2006 (in press).

  8. H. Sato, M. Kikuchi, M. Komatsu, O. Okuno, and T. Okabe: J. Biomed. Mater. Res. Part B: Applied Biomater., 2005, vol. 72B, pp. 362–67.

    Article  CAS  Google Scholar 

  9. M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, and T. Okabe: Dent. Mater., 2003, vol. 19, pp. 174–81.

    Article  CAS  Google Scholar 

  10. M. Kikuchi, M. Takahashi, T. Okabe, and O. Okuno: Dent. Mater. J., 2003, vol. 22 (2), pp. 191–205.

    CAS  Google Scholar 

  11. M. Koike, M. Itoh, O. Okuno, O. Takeda, T.H. Okabe, and T. Okabe: J. Mater. Eng. Perform., 2005, vol. 14 (6), pp. 778–83.

    Article  CAS  Google Scholar 

  12. M. Kikuchi, M. Takahashi, and O. Okuno: Dent. Mater. J., 2003, vol. 22, pp. 28–34.

    Google Scholar 

  13. C. Ohkubo, I. Shimura, T. Aoki, S. Hanatani, and T. Okabe: Prosthodontics, 2002, vol. 11 (4), pp. 263–69.

    Article  Google Scholar 

  14. C. Ohkubo, I. Shimura, T. Aoki, S. Hanatani, T. Hosoi, M. Hattori, Y. Oda, and T. Okabe: Biomaterials, 2003, vol. 24, pp. 3377–81.

    Article  CAS  Google Scholar 

  15. D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, and N. Kurosaki: Biomaterials, 2003, vol. 24, pp. 1519–24.

    Article  CAS  Google Scholar 

  16. F. Koenigsberger: Design Principles of Metal-Cutting Machine Tools, MacMillan Company, New York, NY, 1964, pp. 19–21.

    Google Scholar 

  17. C.A. Smits: in Metalworking Fluids, edited by J.P. Byers, Chapter 4, Marcel Dekker, New York, NY, 1994, pp. 99–134.

    Google Scholar 

  18. M.C. Shaw: Metal Cutting Principles, Clarendon Press, Oxford, UK, 1984.

    Google Scholar 

  19. M.C. Shaw: Principles of Abrasive Processing, Clarendon Press, Oxford, UK, 1996.

    Google Scholar 

  20. J.F. Kahles, M. Field, D. Eylon, and F.H. Froes: JOM, 1985, vol. 37 (4), pp. 27–35.

    Google Scholar 

  21. K.S. Chan, Y.-D. Lee, D.L. Davidson, and S.J. Hudak, Jr.: Int. J. Fracture, 2001, vol. 112, pp. 299–330.

    Article  Google Scholar 

  22. K.S. Chan: Scripta Metall., 1990, vol. 24, pp. 1725–30.

    Article  CAS  Google Scholar 

  23. N.E. Dowling: Eng. Fract. Mech., 1987, vol. 265, pp. 333–48.

    Article  Google Scholar 

  24. Y. Murakami: Stress Intensity Factors Handbook, Vol. 2, Pergamon Press, Oxford, UK, 1987, pp. 643–45.

    Google Scholar 

  25. J.R. Rice: J. Appl. Mech., 1968, vol. 35, pp. 379–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K., Koike, M. & Okabe, T. Grindability of Ti alloys. Metall Mater Trans A 37, 1323–1331 (2006). https://doi.org/10.1007/s11661-006-1084-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1084-9

Keywords

Navigation