Skip to main content
Log in

Modeling and processing of liquid-phase-sintered γ-TiAl during high-density infrared processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new method for the rapid processing of thin gage sheet of traditionally difficult-to-process materials, such as γ-TiAl, has been modeled and experimentally developed. The method uses high density infrared (HDI) rapid heating of a plasma arc lamp to liquid-phase sinter powder metal compact precursors to structures of varying densities. Material properties for precursor γ-TiAl compacts were effectively chosen or determined and then used with a finite-volume heat-transfer modeling code to model the process. With the aid of the model, processing parameters were determined that allowed for a temperature gradient across the sheet that would produce a liquid-phase cast structure on the surface, residual powder on the backside, and a middle layer solid + liquid zone. Temperature and phase fields were predicted through the thickness of the sheet using the model. Fine grain, lamellar structured materials were produced in the liquid-phase-sintered zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. LeHolm, H. Clemens, and H. Kestler: 2nd Int. Symp. on Gamma Titanium Aluminides (ISGTA) 1999, TMS-AIME, Warrendale, PA, 1999, pp. 25–33.

    Google Scholar 

  2. Y.-W. Kim: JOM, 1994, vol. 46 (11), pp. 30–39.

    CAS  Google Scholar 

  3. C.M. Austin, T.J. Kelly, K.G. McAllister, and J.C. Chestnut: Proc. ISSI Structural Intermetallics Symp., TMS-AIME, Warrendale, PA, 1997, pp. 413–25.

    Google Scholar 

  4. W. Smarsly and L. Singheiser: Materials for Advanced Power Engineering Part II, Kluwer Academic Publishers, Dordrecht, Netherlands, 1994, pp. 1731–56.

    Google Scholar 

  5. M. Matsuo: J. Steel Inst. Jpn., 1991, vol. 31, pp. 1212–22.

    CAS  Google Scholar 

  6. D.E. Davidson: Proc. 8th Int. Superalloys 1996 Symp., TMS, Warrendale, PA, 1996, pp. 545–53.

    Google Scholar 

  7. R.B. LeHolm and R.M. Martinez: Titanium ’95, The Institute of Materials, London, 1995, pp. 1517–624.

    Google Scholar 

  8. M. Blum, A. Choudhury, H. Scholz, G. Jarczyk, S. Pleier, P. Busse, G. Frommeyer, and S. Knipperscheer: Gamma Titanium Aluminides 1999, TMS-AIME, Warrendale, PA, 1999, pp. 35–39.

    Google Scholar 

  9. A. Gilcrest and T.M. Pollock: Structural Intermetallics, TMS-AIME, Warrendale, PA, 2001, pp. 3–12.

    Google Scholar 

  10. R.E. Schafrik: Structural Intermetallics, TMS-AIME, Warrendale, PA, 2001, pp. 12–17.

    Google Scholar 

  11. G. Das, P. A. Bartolotta, H. Kestler, and H. Clemens: Structural Intermetallics, TMS-AIME, Warrendale, PA, 2001, pp. 121–30.

    Google Scholar 

  12. V. Guther, R. Joos, and H. Clemens: Structural Intermetallics, TMS-AIME, Warrendale, PA, 2001, pp. 167–73.

    Google Scholar 

  13. J.H. Moll, E. Whitnet, C.F. Yolton, and U. Habel: Gamma Titanium Aluminides 1999, TMS-AIME, Warrendale, PA, 1999, pp. 255–63.

    Google Scholar 

  14. J.D.K. Rivard, C.A. Blue, A. Sabau, E.K. Ohriner, and D.C. Harper: TMS Lett., 2004, vol. 1, pp. 95–96.

    CAS  Google Scholar 

  15. J.D.K. Rivard, C.A. Blue, E.K. Ohriner, and D.C. Harper: Int. J. Powder Metall., 2002, vol. 38, pp. 49–55.

    CAS  Google Scholar 

  16. J.D.K. Rivard, C.A. Blue, E.K. Ohriner, A. Sabau, D.C. Harper, and N. Jayaraman: Advances in Powder Metallurgy & Particulate Materials—2002, MPIF, Princeton, NJ, 2002, pp. 11-81–11-91.

    Google Scholar 

  17. J.D.K. Rivard, A. Sabau, C.A. Blue, E.K. Ohriner, and D.C. Harper: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 3043–54.

    Article  CAS  Google Scholar 

  18. Y.-W. Kim and D.M. Dimiduk: JOM, 1991, vol. 43 (8), pp. 40–47.

    CAS  Google Scholar 

  19. M.R. Hajaligol, R.E. Mistler, V.K. Sikka, C.R. Scorey, and J.E. McKernan: Mater. Sci. Eng. A, 1998, vol. 258, pp. 258–65.

    Article  Google Scholar 

  20. J.D.K. Rivard, C.A. Blue, R.D. Ott, A. Sabau, M. Santella, T.Y. Pan, and A. Joaquin: Surf. Eng., 2004, vol. 20, pp. 220–28.

    Article  CAS  Google Scholar 

  21. B. Li, X. Liang, J.C. Earthman, and E.J. Lavernia: Acta Mater., 1996, vol. 44, pp. 2409–20.

    Article  CAS  Google Scholar 

  22. W.L. Stone and T.R. Kurfess: SME Technical Paper MR02-143, Society for Manufacturing Engineers, Dearborn, MI, 2002.

    Google Scholar 

  23. K.B. Bisen, M. Arenas, N. El-Kaddah, and V.L. Acoff: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2273–79.

    Article  CAS  Google Scholar 

  24. J.D.K. Rivard, C.A. Blue, A. Sabau, E.K. Ohriner, and D.C. Harper: 39th JANNAF Combustion Subcommittee Meeting, Colorado Springs, CO, 2003.

  25. R.K. Bird: RLV/SOV Airframe Technology Review, NASA Langley, Hampton, VA, 2002, pp. 1–20.

    Google Scholar 

  26. K.W. Liu, R. Gerling, and F.P. Schimansky: Scripta Mater., 1999, vol. 40, pp. 601–08.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivard, J.D.K., Sabau, A.S., Blue, G.A. et al. Modeling and processing of liquid-phase-sintered γ-TiAl during high-density infrared processing. Metall Mater Trans A 37, 1289–1299 (2006). https://doi.org/10.1007/s11661-006-1081-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1081-z

Keywords

Navigation