Skip to main content
Log in

An approach to predict free surface fracture in bulk forming

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work presents a unified approach to predict surface strains at failure in bulk forming processes. The approach does not deal with a specific process but rather with prescribed strain and stress paths. The material to be processed is assumed to possess an initial void volume fraction that grows and colaesces with straining, ending by fracture. The predictions are based on a formulation for voided solids according to the Gurson-Tvergaard yield function adapted to include orthotropic anisotropy. The incident of fracture is characterized by shear band formation within the ligaments of the matrix material among spheroidal voids as described by McClintock. The results are represented by a straight line plot of tensile limit strain versus the compressive strain for different loading paths. These limit curves are shown to be dependent on the initial void fraction, hardening, and anisotropy of the matrix matrial. Alloys with lower initial void fractions as well as those of higher hardening show better workability. The model is applied to predict bulk formability curves for steels AISI 1040 and 1045, Aluminum AI 7075-T6, and copper, based on the proper selection of micromechanical parameters for these alloys. The validity of the model is ensured through fairly favorable comparison with experimentally determined limit curves. The current failure conditions are suitable to predict the experimental dual slope fracture line that may exist for some alloys such as cold-drawn steel AISI 1045 and aluminum 2024-T6 by considering two mechanisms of failure: internal necking in the ligament material between voids, followed by transition to shear band formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b1, b2:

length of axis of a spheroidal void and surrounding matrix material, respectively, transverse to maximum principal stress

f :

void volume fraction

n :

strain-hardening exponent

q1, q2:

semiempirical parameters in Gurson-Tvergaard yield function

R, P :

orthotropic anisotropy ratios along and transverse to rolling direction, respectively: R=r 0 and P=r 90

α :

stress ratio: σ 21

ρ :

strain ratio: ε21

ε j :

strain components (j=1, 2, 3)

ɛ,ɛ M :

effective macroscopic strain and effective matrix strain, respectively: ɛ=(3 ε bij ε bij /2)1/2

λ1 :

aspect ratio of a spheroidal void

ω j :

stress components (j=1, 2, 3)

σm :

mean stress: σmjj/3

O,O M :

effective macroscopic stress and effective matrix stress, respectively

M:

matrix

i:

initial

References

  1. G. Dieter: in ASM Metals Handbook, 9th ed., ASM, Metals Park, OH, 1987, vol. 8, pp. 571–97.

    Google Scholar 

  2. H.A. Kuhn: in Advances in Deformation Processing, J.J. Burke and V. Weiss, eds., Plenum Press, New York, NY, 1978, pp. 159–85.

    Google Scholar 

  3. S. Kobayashi: Trans. ASME, Journal of Engineering for Industry, 1970, vol. 92, pp. 391–99.

    Article  Google Scholar 

  4. P.W. Lee and H.A. Kuhn: Metall. Trans., 1973, vol. 4A, pp. 969–74.

    Google Scholar 

  5. D.C. Shah: in Mechanical Working and Steel Processing, TMSAIME, The Metallurgical Society, New York, 1974, vol. 12, pp. 285–300.

    Google Scholar 

  6. S.I. Oh and S. Kobayashi: Trans. ASME, Journal of Engineering for Industry, 1976, vol. 98, pp. 800–06.

    CAS  Google Scholar 

  7. H.A. Kuhn and P.W. Lee: Metall. Trans., 1971, vol. 2A, pp. 3197–202.

    Google Scholar 

  8. P.F. Thomason: International Journal of Mechanical Science, 1969, vol. 11, pp. 187–98.

    Article  Google Scholar 

  9. M.G. Cockroft and D.J. Latham: J. Inst. Metals, 1968, vol. 96, pp. 33–39.

    Google Scholar 

  10. P. Brozzo, B. Deluca, and R. Rendina: Proc. 7 th Biennial Conf. IDDRG. Amsterdam, The Netherlands, 1972.

  11. V. Vujovic and A.H. Shabaik: J. Eng. Mater. Technol., 1986, vol. 108, pp. 245–49.

    Article  Google Scholar 

  12. A.S. Wifi, A. Abdel-Hamid, and N. El-Abbasi: J. Mater. Process Technol., 1998, vol. 77, pp. 285–93.

    Article  Google Scholar 

  13. Y. Bao and T. Wierzbicki: J. Eng. Mater. Technol., 2004, vol. 126. pp. 314–24.

    Article  CAS  Google Scholar 

  14. Z. Marciniak and K. Kuczynski: International Journal of Mechanical Science, 1967, vol. 9, pp. 609–20.

    Article  Google Scholar 

  15. A.S. Kao, H.A. Kuhn, O. Richmond, and W. Spitzig: Metall. Trans. A, 1989, vol. 20A, pp. 1735–41.

    CAS  Google Scholar 

  16. J.R. Rice and D.M. Tracey: Journal of Mechanics and Physics of Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  17. A.R. Ragab: Mater. Sci. Eng., A, 2002, vol. 334, pp. 114–19.

    Article  Google Scholar 

  18. V. Tvergaard: International Journal of Fracture, 1982, vol. 18, pp. 237–52.

    Google Scholar 

  19. A.R. Ragab and Ch. Saleh: Mater. Sci. Eng., A, 2005, vol. 395, pp. 102–09.

    Article  CAS  Google Scholar 

  20. A.R. Ragab and Ch. Saleh: Int. J. Plast., 1999, vol. 15, pp. 1041–65.

    Article  Google Scholar 

  21. R. Hill: The Mathematical Theory of Plasticity, Oxford Unversity Press, Oxford, England, 1950.

    Google Scholar 

  22. F.A. McClintock: in Ductility, ASM, Metals Park, OH, 1968, pp. 255–77.

    Google Scholar 

  23. A.R. Ragab: Engineering Fracture Mechanics, 2004, vol. 71, pp. 1515–34.

    Article  Google Scholar 

  24. W.F. Hosford: International Journal of Mechanical Science, 1985, vol. 27, pp. 423–27.

    Article  Google Scholar 

  25. A.R. Ragab: Acta Mater., 2004, vol. 52, pp. 3997–4009.

    Article  CAS  Google Scholar 

  26. G. LeRoy, J.D. Embury, G. Edwards, and M.F. Ashby: Acta Metall., 1981, vol. 29, pp. 1509–22.

    Article  CAS  Google Scholar 

  27. T. Pardoen, I. Doghri, and F. Dellany: Acta Mater., 1998, vol. 46, pp. 541–52.

    Article  CAS  Google Scholar 

  28. H.A. Kuhn: in Metals Handbook, S.L. Semiatin, ed., ASM, Metals Park, OH, 1988, vol. 14, pp. 388–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragab, A.R. An approach to predict free surface fracture in bulk forming. Metall Mater Trans A 37, 1281–1287 (2006). https://doi.org/10.1007/s11661-006-1080-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1080-0

Keywords

Navigation