Metallurgical and Materials Transactions A

, Volume 37, Issue 4, pp 1231–1237 | Cite as

Brief review of oxidation kinetics of copper at 350 °C to 1050 °C

  • Kouji Mimura
  • Jae-Won Lim
  • Minoru Isshiki
  • Yongfu Zhu
  • Qing Jiang
Article

Abstract

Copper’s oxication mechanism and purity effects were elucidated by oxidizing 99.99 pct (4N), 99.9999 pct (6N), and floating zone refined (>99.9999 pct) specimens in 0.1 MPa oxygen at 350 °C to 1050 °C. Throughout the temperature range, the oxidation kinetics for all specimens obeys the parabolic oxidation rate law. The Cu2O scale grows predominantly, and the rate-determining step is concluded to be outward diffusion of copper atoms in Cu2O. The activation energy at high temperatures, where the lattice diffusion predominates, is 173 kJ/mol, but it becomes lower at intermediate temperatures and even lower at low temperatures because of the contribution of the grain boundary diffusion. At high temperatures, oxidation kinetics is almost uninfluenced by purity, but the lattice-diffusion temperature range is wider for higher-purity copper. At intermediate temperatures, copper oxidation is enhanced because trace impurities can impede growth of Cu2O grains to facilitate grain boundary diffusion. At low temperatures, grain boundary diffusion is possibly hindered by impurities segregated at grain boundaries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ronnquist and H. Fischmeister: J. Inst. Metals, 1960–61, vol. 89, pp. 65–76.Google Scholar
  2. 2.
    R.F. Tylecote: J. Inst. Metals, 1950–51, vol. 78, pp. 259–300.Google Scholar
  3. 3.
    O. Kubaschewski: Oxidation of Metals and Alloys, Academic Press Inc., New York, NY, 1962, pp. 249–53.Google Scholar
  4. 4.
    P. Kofstad: High Temperature Corrosion, Elsevier Science Publishing Co., Inc., New York, NY, 1988, pp. 162–239.Google Scholar
  5. 5.
    K. Hauffe: Oxidation of Metals, Plenum Press, New York, NY, 1965, pp. 159–70.Google Scholar
  6. 6.
    S. Mrowec and A. Stoklosa: Oxid. Metal., 1971, vol. 3, pp. 291–311.CrossRefGoogle Scholar
  7. 7.
    R.F. Tylecote: J. Inst. Metals, 1950–51, vol. 78, pp. 327–50.Google Scholar
  8. 8.
    D.W. Bridges, J.P. Baur, G.S. Baur, and W.M. Fassell: J. Electrochem. Soc., 1956, vol. 103, pp. 475–78.CrossRefGoogle Scholar
  9. 9.
    L. Czerski, S. Mrowec, and T. Werber: Roczniki Chem., 1964, vol. 38, pp. 643–54.Google Scholar
  10. 10.
    J.H. Park and K. Natesan: Oxid. Metal., 1993, vol. 39, pp. 411–35.CrossRefGoogle Scholar
  11. 11.
    P. Kofstad: Nature, 1957, vol. 179, pp. 1362–63.CrossRefGoogle Scholar
  12. 12.
    J.A. Sartell and C.H. Li: Trans. Am. Soc. Metall, 1962, vol. 55, pp. 158–62.Google Scholar
  13. 13.
    G. Valensi: Pittsburgh International Conf. on Surface Reactions, 1948, pp. 156–59.Google Scholar
  14. 14.
    O. Kubaschewski and O.V. Goldbeck: Z. Metallk., 1946, vol. 39, pp. 158–264.Google Scholar
  15. 15.
    C. Gensch and K. Hauffe: Z. Phys. Chem., 1951, vol. 196, pp. 427–32.Google Scholar
  16. 16.
    G. Valensi: Metallurg. Ital., 1950, vol. 42, pp. 77–109.Google Scholar
  17. 17.
    V.B. Voitovich: Oxid. Metal., 1994, vol. 42, pp. 249–63.CrossRefGoogle Scholar
  18. 18.
    V.B. Voitovich: Oxid. Metal., 1994, vol. 42, pp. 223–37.CrossRefGoogle Scholar
  19. 19.
    D. Caplan, M.J. Graham, and M. Cohen: J. Electrochem. Soc., 1972, vol. 119, pp. 1205–13.CrossRefGoogle Scholar
  20. 20.
    Y. Zhu, K. Mimura, and M. Isshiki: Corros. Sci., 2005, vol. 47, pp. 537–44.CrossRefGoogle Scholar
  21. 21.
    Y. Zhu, K. Mimura, and M. Isshiki: Mater. Trans., 2002, vol. 43, pp. 2173–76.CrossRefGoogle Scholar
  22. 22.
    Y. Zhu, K. Mimura, and M. Isshiki: J. Electrochem. Soc., 2004, vol. 151, pp. B27–32.CrossRefGoogle Scholar
  23. 23.
    Y. Zhu: Ph.D. Thesis, Tohoku University, Japan, 2002.Google Scholar
  24. 24.
    Y.F. Zhu, K. Mimura, Y. Ishikawa, and M. Isshiki: Mater. Trans., 2002, vol. 43, pp. 2802–07.CrossRefGoogle Scholar
  25. 25.
    J. Paidassi: Acta Metall., 1958, vol. 6, pp. 216–19.Google Scholar
  26. 26.
    F. De Carli and N. Collari: Chim. Industr, 1951, vol. 33, pp. 77–83.Google Scholar
  27. 27.
    R.F. Tylecote: Metallurgia, 1956, vol. 53, pp. 191–97.Google Scholar
  28. 28.
    Y. Zhu, K. Mimura, and M. Isshiki: Corros. Sci., 2004, vol. 46, pp. 2445–54.CrossRefGoogle Scholar
  29. 29.
    Y. Zhu, K. Mimura, S.H. Hong, and M. Isshiki: J. Electrochem. Soc., 2005, vol. 152, pp. B296–301.CrossRefGoogle Scholar
  30. 30.
    Y. Zhu, M. Mimura, and M. Isshiki: Oxid. Met., 2003, vol. 59, pp. 575–90.CrossRefGoogle Scholar
  31. 31.
    W.W. Smeltzer, R.R. Haering, and J.S. Kirkaldy: Acta Metall., 1961, vol. 9, pp. 880–85.CrossRefGoogle Scholar
  32. 32.
    N.N. Khoi, W.W. Smeltzer, and J.D. Embury: J. Electrochem. Soc., 1975, vol. 122, p. 1495.CrossRefGoogle Scholar
  33. 33.
    Y. Shima, Y. Ishikawa, H. Nitta, Y. Yamazaki, K. Mimura, M. Isshiki, and Y. Iijima: Mater. Trans., 2002, vol. 43, pp. 173–77.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Kouji Mimura
    • 1
  • Jae-Won Lim
    • 1
  • Minoru Isshiki
    • 1
  • Yongfu Zhu
    • 2
    • 3
  • Qing Jiang
    • 4
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  2. 2.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  3. 3.Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science & EngineeringJilian UniversityChangchunP.R. China
  4. 4.Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science & EngineeringJilian UniversityChangchunP.R. China

Personalised recommendations