Skip to main content
Log in

On the role of water vapor and oxygen on the fatigue crack propagation behavior at 550 °C of a Ti6242 alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of gaseous atmosphere on the fatigue crack propagation behavior of a Ti6242 alloy is studied at 550 °C. The aim of this paper is to obtain reference data in controlled environments at the atmospheric pressure in view of a further evaluation of the corrosion-fatigue resistance of this alloy in super-critical water medium for a new process for hydrothermal treatment of organic effluents. Tests were conducted in ambient air, high vacuum, and humidified gaseous atmospheres (80 pct RH) including pure argon, 80 pct argon + 20 pct oxygen, and 80 pct nitrogen + 20 pct oxygen. The loading specimen was triangular at a frequency of 0.05 Hz. Some additional tests were performed at frequencies ranging from 0.001 to 35 Hz. The crack propagation rate is shown to be highly sensitive to the environment, with a predominant detrimental influence of water vapor. A crack growth model is proposed accounting for the influence of partial pressures of water vapor, oxygen, test, and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Petit, G. Hénaff, and C. Sarrazin-Baudoux: in Environmentally-Assisted Fracture, J. Petit and P. Scott, eds., Vol. 6 of Comprehensive Structural Integrity, Elsevier, 2003.

  2. C. Sarrazin-Baudoux, Y. Chabanne, and J. Petit: ASTM-STP 1372, Fatigue Crack Growth Thresholds, Endurance Limits and Design, James C. Newman and Robert S. Piasick, eds., 2000, pp. 341–60.

  3. F. Sansoz and H. Ghonem: Metall. Trans., 2003, vol. 34A, pp. 2565–77.

    CAS  Google Scholar 

  4. C. Sarrazin-Baudoux and J. Petit: Ann. Chim.Sci Mat., 2002, vol. 27 (Suppl. 1), pp. S173-S184.

    Google Scholar 

  5. P.E. Irving and C.J. Beevers: Metall. Trans, 1974, vol. 5, pp. 391–98.

    Article  CAS  Google Scholar 

  6. D.A. Jablonski, J.V. Carisella, and R.M. Pelloux: Metall. Trans. A, 1977, vol. 8A, pp. 1893–900.

    CAS  Google Scholar 

  7. R. Mollins, G. Hochstetter, J.C. Chassaigne, and E. Andrieu: Acta Met., 1997, vol. 47, pp. 663–74.

    Google Scholar 

  8. F. Gourges and E. Andrieu: Mater. Sci. Engin., 2003, vol. A351, pp. 39–55.

    Article  Google Scholar 

  9. J.A. Ruppen and A.J. McEvily: Fat. Eng. Mat. Struct, 1979, vol. 2, pp. 63–72.

    Article  CAS  Google Scholar 

  10. M.W. Mahoney and N.E. Paton: Met. Trans, 1977, vol. 9A, pp. 1497–501.

    Google Scholar 

  11. R. Foerch, A. Madsen, and H. Ghonem: Metall. Trans, 1993, vol. 24A, pp. 1321–32.

    CAS  Google Scholar 

  12. H. Ghonem and R. Foerch: Mater. Sci. Engin., 1991, vol. A138, pp. 69–81.

    Article  CAS  Google Scholar 

  13. A.M. Koster Alam and L. Rémy: in Temperature Fatigue Interaction, L. Rémy and J. Petit, eds., ESIS Pub. 29, 2002, pp. 203–13.

  14. S. Ponnelle, B. Brethes, and A. Pineau: Temperature Fatigue Interaction, L. Rémy and J. Petit, eds., ESIS Pub. 29, 2002, pp. 257–66.

  15. J. Petit and G. Hénaff: Scripta Metall., 1991, vol. 25, pp. 2683–87.

    Article  CAS  Google Scholar 

  16. C. Sarrazin-Baudoux, S. Lesterlin, Y. Chabanne, and J. Petit: in Engineering Against Fatigue, J.H. Beynon, M.W. Brown, R.A. Smith, T.C. Lindley, and B. Tomkins, eds., A.A. Balkema Pub., Rotterdam, Netherlands, & UK, 1999, pp. 667–74.

    Google Scholar 

  17. U.R. Evans: in The Corrosion and Oxidation of Metals, E. Arnold, Ed. London, 1960.

    Google Scholar 

  18. Y. Wouters, A. Galerie, and J.P. Petit: Solid State Ionics, 1997, vol. 104, pp. 89–96.

    Article  CAS  Google Scholar 

  19. C. Sarrazin, S. Lesterlin, and J. Petit: in ASTM STP 1297, R.S. Piascik, A. Saxena, and R.P. Gangloff, eds., American Society for Testing Materials, 1997, pp. 117–39.

  20. A. Dowson, P.K. Datta, and K.N. Strafford: in Sixth World Conference on Titanium, P. Lacombe, R. Tricot and G. Béranger, eds. Les Editions de Physique, 1988, pp. 1771–82.

  21. S.N. Sankaran, R.K. Herrman, R.A. Outlaw, and R.K. Clark: Metall. Trans., 1994, vol. 25A, pp. 89–97.

    CAS  Google Scholar 

  22. T. Moroishi and Y. Shida: in Titanium ’80, H. Kimura and O. Izumi, eds, 1980, pp. 2773–82.

  23. R.P. Wei and M. Gao: Scripta Metall., 1983, vol. 17, pp. 959–62.

    Article  Google Scholar 

  24. C. Sarrazin-Baudoux: in Proceedings of the 10th World Conference on Titanium, Ti-2003, G. Lütjering and J. Albrecht, eds., DGM Pub., vol. IV, 2003, pp. 1995–2002.

  25. R.P. Wei and G.W. Simmon: International Journal of Fatigue, vol. 17, 1981, pp. 235–47.

    CAS  Google Scholar 

  26. F.A. McClintock: in Discussion on influence of metallurgical structure (Laird), Fatigue crack propagation, ASTM STP 415, 1967, pp. 170–72.

  27. G. Chalant, J. Petit, and B. Suyitno: in Fatigue ’99, H. Kitagawa and T. Tanaka, eds., vol. III, 1990, pp. 1771–76.

  28. C. Sarrazin-Baudoux: Fatigue Frac. Engng. Mater., 2005, vol. 28, pp. 1161–68.

    Article  CAS  Google Scholar 

  29. J. Oudar: in Corrosion Mechanisms in Theory and Practice, P. Marcus and J. Oudar, eds., 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarrazin-Baudoux, C., Loubat, F. & Potiron, S. On the role of water vapor and oxygen on the fatigue crack propagation behavior at 550 °C of a Ti6242 alloy. Metall Mater Trans A 37, 1201–1209 (2006). https://doi.org/10.1007/s11661-006-1071-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1071-1

Keywords

Navigation