Skip to main content
Log in

A model for predicting the yield stress of AA6111 after multistep heat treatments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model has been developed to predict the yield stress (YS) of the aluminum alloy AA6111 after multistep heat treatments that involve combinations of ambient-temperature aging and high-temperature artificial aging. The model framework follows the internal state variable framework where the two principal state variables are the volume fraction of clusters that form at ambient temperature and the volume fraction of metastable phases that form during high-temperature aging. The evolution of these state variables was modeled using a set of coupled differential equations. The mechanical response (the YS) was then formulated in terms of the state variables through an appropriate flow stress addition law. To test the model predictions, a series of experiments were conducted that examined two scenarios for multistep heat treatments. In general, good agreement was observed between the model predictions and the experimental results. However, for the case where a short thermal excursion at 250 °C was applied immediately after the solution treatment, the results were not satisfactory. This can be understood in terms of the importance of the temperature dependence for the nucleation density of metastable precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Pashley, J.W. Rhodes, and A. Sendorek: J. Inst. Metals, 1966, vol. 94, pp. 41–49.

    CAS  Google Scholar 

  2. D.W. Pashley, M.H. Jacobs, and J.T. Vietz: Phil. Mag., 1967, vol. 16, pp. 51–76.

    Article  CAS  Google Scholar 

  3. D.J. Lloyd: Mater. Forum, 2004, vol. 28, pp. 107–17.

    CAS  Google Scholar 

  4. W.J. Poole, D.J. Lloyd, and J.D. Embury: Mater. Sci. Eng., 1997, vol. A234–236, pp. 306–09.

    Google Scholar 

  5. D.J. Lloyd, D.R. Evans, and A.K. Gupta: Can. Metall. Q., 2000, vol. 39, pp. 475–82.

    CAS  Google Scholar 

  6. S. Esmaeili, D.J. Lloyd, and W.J. Poole: Acta Mater., 2003, vol. 51, pp. 2243–57.

    Article  CAS  Google Scholar 

  7. S. Esmaeili, D.J. Lloyd, and W.J. Poole: Acta Mater., 2003, vol. 51, pp. 3467–81.

    Article  CAS  Google Scholar 

  8. D.J. Chakrabarti and D.E. Laughlin: Prog. Mater. Sci., 2004, vol. 49, pp. 389–410.

    Article  CAS  Google Scholar 

  9. W.J. Poole, X. Wang, D.J. Lloyd, and J.D. Embury: Phil. Mag., 2005, vol. 85, pp. 3113–35.

    Article  CAS  Google Scholar 

  10. D. Vaumousse, A. Cerezo, P.J. Warren, and S.A. Court: Mater. Sci. Forum, 2002, vol. 396–402, pp. 693–98.

    Article  Google Scholar 

  11. M. Murayama and K. Hono: Acta Mater., 1999, vol. 47, pp. 1537–48.

    Article  CAS  Google Scholar 

  12. M. Murayama, K. Hono, W.F. Miao, and D.E. Laughlin: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 239–46.

    Article  CAS  Google Scholar 

  13. S. Esmaeili, X. Wang, D.J. Lloyd, and W.J. Poole: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 751–63.

    CAS  Google Scholar 

  14. X. Wang, W.J. Poole, S. Esmaeili, D.J. Lloyd, and J.D. Embury: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2913–24.

    Article  CAS  Google Scholar 

  15. O. Richmond: J. Metals, 1986, vol. 38, pp. 16–18.

    CAS  Google Scholar 

  16. Ø. Grong and H.R. Shercliff: Prog. Mater. Sci., 2002, vol. 47, pp. 163–282.

    Article  CAS  Google Scholar 

  17. W.J. Poole, H.R. Shercliff, and T. Castillo: Mat. Sci. Tech., 1997, vol. 13, pp. 897–904.

    CAS  Google Scholar 

  18. C. Panseri and T. Fegerighi: J. Inst. Metals, 1966, vol. 94, pp. 99–107.

    CAS  Google Scholar 

  19. A. Kelly and R.B. Nicholson: Prog. Mater. Sci., 1963, vol. 10, pp. 312–15.

    Google Scholar 

  20. S. Esmaeili: University of Waterloo, Ontario, Canada, private communication, 2003.

  21. O.R. Myhr and Ø. Grong: Acta Mater., 2000, vol. 48, pp. 1605–15.

    Article  CAS  Google Scholar 

  22. O.R. Myhr, Ø. Grong, and S.J. Anderson: Acta Mater., 2001, vol. 49, pp. 65–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeisinia, B., Poole, W.J., Wang, X. et al. A model for predicting the yield stress of AA6111 after multistep heat treatments. Metall Mater Trans A 37, 1183–1190 (2006). https://doi.org/10.1007/s11661-006-1069-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1069-8

Keywords

Navigation