Advertisement

Metallurgical and Materials Transactions A

, Volume 31, Issue 7, pp 1857–1865 | Cite as

Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5

  • M. W. Barsoum
  • T. El-Raghy
  • M. Ali
Article

Abstract

In this article, we report on the fabrication and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Reactive hot isostatic pressing (hipping) at ≈40 MPa of the appropriate mixtures of Ti, Al4C3 graphite, and/or AlN powders for 15 hours at 1300 °C yields predominantly single-phase samples of Ti2AlC0.5N0.5, 30 hours at 1300 °C yields predominantly single-phase samples of Ti2AlC. Despite our best efforts, samples of Ti2AlN (hot isostatic pressed (hipped) at 1400 °C for 48 hours) contain anywhere between 10 and 15 vol pct of ancillary phases. At ≈25 µM, the average grain sizes of Ti2AlC0.5N0.5 and Ti2AlC are comparable and are significantly smaller than those of Ti2AlN, at ≈100 µm. All samples are fully dense and readily machinable. The room-temperature deformation under compression of the end-members is noncatastrophic or graceful. At room temperature, solid-solution strengthening is observed; Ti2AlC0.5N0.5 is stronger in compression, harder, and more brittle than the end-members. Conversely, at temperatures greater than 1200 °C, a solid-solution softening effect is occurring. The thermal-expansion coefficients (CTEs) of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5 are, respectively, 8.2 × 10−6, 8.8 × 10−6, and 10.5 × 10−6 °C−1, in the temperature range from 25 °C to 1300 °C. The former two values are in good agreement with the CTEs determined from high-temperature X-ray diffraction (XRD). The electrical conductivity of the solid solution (3.1 × 106 (Θ m)−1) is in between those of Ti2AlC and Ti2AlN, which are 2.7 × 106 and 4.0 × 106 Θ −1 m−1, respectively.

Keywords

Solid Solution Material Transaction Shear Band Backscatter Scanning Electron Microscope Micrographs High Temperature Material Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Jeitschko, H. Nowotny, and F. Benesovsky: Monatsh. Chem., 1963, vol. 94, p. 1198.CrossRefGoogle Scholar
  2. 2.
    W. Jeitschko, H. Nowotny, and F. Benesovsky: Monatsh. Chem., 1963, vol. 94, p. 672.CrossRefGoogle Scholar
  3. 3.
    W. Jeitschko and H. Nowotny: Monatsh. Chem., 1967, vol. 98, pp. 329–37.CrossRefGoogle Scholar
  4. 4.
    M. Pietzka and J.C. Schuster: Concerted Action on Materials Science, Leuven Proc., Part A, Commission of the European Communities, Brussels, Belgium, 1992.Google Scholar
  5. 5.
    M.A. Pietzka and J.C. Schuster: J. Phase Equilibria, 1994, vol. 15, p. 392.Google Scholar
  6. 6.
    M.W. Barsoum, L. Farber, I. Levin, A. Procopio, T. El-Raghy, and A. Berner: J. Am. Cer. Soc., 1999, vol. 82, pp. 2545–47.CrossRefGoogle Scholar
  7. 7.
    M.W. Barsoum and T. El-Raghy: J. Am. Cer. Soc. 1996, vol. 79, pp. 1953–56.CrossRefGoogle Scholar
  8. 8.
    M.W. Barsoum, D. Brodkin and T. El-Raghy: Scripta Metall. Mater., 1997, vol. 36, pp. 535–41.Google Scholar
  9. 9.
    T. El-Raghy, A. Zavaliangos, M.W. Barsoum, and S. Kalidinidi: J. Am. Cer. Soc., 1997, vol. 80, pp. 513–16.CrossRefGoogle Scholar
  10. 10.
    M.W. Barsoum and T. El-Raghy: J. Mater. Synth. Processing, 1997, vol. 5, pp. 197–216.Google Scholar
  11. 11.
    M.W. Barsoum, G. Yaroschuck, and S. Tyagi: Scripta. Mater., 1997, vol. 37, pp. 1583–91.CrossRefGoogle Scholar
  12. 12.
    I.M. Low, S.K. Lee, B. Lawn, and M.W. Barsoum: J. Am. Cer. Soc., 1998, vol. 81, pp. 225–28.CrossRefGoogle Scholar
  13. 13.
    M.W. Barsoum, T. El-Raghy, C.J. Rawn, W.D. Porter, A. Payzant, and C. Hubbard: J. Phys. Chem. Solids, 1999, vol. 60, pp. 429–39.CrossRefGoogle Scholar
  14. 14.
    A.T. Procopio, M.W. Barsoum, and T. El-Raghy: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 333–37.Google Scholar
  15. 15.
    N. Tzenov and M.W. Barsoum: J. Am. Cer. Soc., 2000, vol. 83, pp. 825–32.CrossRefGoogle Scholar
  16. 16.
    L. Farber, M.W. Barsoum, A. Zavaliangos, T. El-Raghy, and I. Levin: J. Am. Cer. Soc., 1998, vol. 81, pp. 1677–81.CrossRefGoogle Scholar
  17. 17.
    M.W. Barsoum and T. El-Raghy: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 363–69.Google Scholar
  18. 18.
    M.W. Barsoum, L. Farber, T. El-Raghy, and I. Levin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1727–38.CrossRefGoogle Scholar
  19. 19.
    V.I. Ivchenko, M.I. Lesnaya, and V.F. Nemchenko, and T.Y. Kosolapova: Porosh. Metall., 1976, vol. 160, p. 60.Google Scholar
  20. 20.
    V.I. Ivchenko, and T.Y. Kosolapova: Porosh. Metall., 1975, vol. 150, p. 1.Google Scholar
  21. 21.
    V.I. Ivchenko, M.I. Lesnaya, V.F. Nemchenko, and T.Y. Kosolapova: Porosh. Metall., 1976, vol. 161, p. 45.Google Scholar
  22. 22.
    V.I. Ivchenko and T.Y. Kosolapova: Porosh. Metall., 1976, vol. 164, p. 56.Google Scholar
  23. 23.
    M.A. Pietzka and J.C. Schuster: J. Am. Cer. Soc., 1996, vol. 79, p. 2321.CrossRefGoogle Scholar
  24. 24.
    A.T. Procopio, T. El-Raghy, and M.W. Barsoum: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 373–78.Google Scholar
  25. 25.
    M. Pietzka: Ph.D. Thesis, University of Vienna, Vienna 1996.Google Scholar
  26. 26.
    Y.N. Vilk: Sov. Powder Metall., Met. Ceram., 1978, vol. 6, p. 467.CrossRefGoogle Scholar
  27. 27.
    T. El-Raghy, M.W. Barsoum, A. Zavaliangos, and S. Kalidindi: J. Am. Cer. Soc., 1999, vol. 82, pp. 2855–59.CrossRefGoogle Scholar
  28. 28.
    M. Radovic, M.W. Barsoum, T. El-Raghy, J. Seidensticker, and S. Wiederhorn: Acta Mater., 2000, vol. 48, pp. 453–59.CrossRefGoogle Scholar
  29. 29.
    A. Cottrell: Chemical Bonding in Transition Metal Carbides, Institute of Materials, Cambridge, 1995.Google Scholar
  30. 30.
    H. Pierson: Handbook of Refractory Carbides and Nitrides, Noyes Pubs., Westwood, NJ, 1996.Google Scholar
  31. 31.
    ASM Metals Handbook, 1990, vol. 2.Google Scholar
  32. 32.
    M. Amer, M.W. Barsoum, T. El-Raghy, I. Wiess, S. LeClair, and D. Liptak: J. Appl. Phys., 1998, vol. 84, pp. 5817–19.CrossRefGoogle Scholar
  33. 33.
    M. Amer: private communication, Wright State Univ., Dayton, OH.Google Scholar
  34. 34.
    J.C. Ho, H.H. Hamdeh, M.W. Barsoum, and T. El-Raghy: J. Appl. Phys., 1999, vol. 85, pp. 7970–71.CrossRefGoogle Scholar
  35. 35.
    J.C. Ho, H.H. Hamdeh, M.W. Barsoum, and T. El-Raghy: J. Appl. Phys., 1999, vol. 86, pp. 3609–11.CrossRefGoogle Scholar
  36. 36.
    W. Lengauer, S. Binder, K. Ainger, P. Ettmayer, A. Gillou, J. Debuigne, and G. Groboth: J. Alloys Compounds, 1995, vol. 217, p. 137.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • M. W. Barsoum
    • 1
  • T. El-Raghy
    • 1
  • M. Ali
    • 2
  1. 1.the Department of Materials EngineeringDrexel UniversityPhiladelphia
  2. 2.Temple UniversityPhiladelphia

Personalised recommendations