Skip to main content
Log in

Segregation and wetting transition at dislocations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We investigate solute segregation and wetting transition at dislocations and the corresponding drag effect on dislocation glide using a continuum model developed previously for grain boundary and based on gradient thermodynamics. The dislocation core structure and stress field are described by the newly developed phase field model. This study differs from much previous work because it takes into account not only the long-range elastic interactions but the short-range chemical interactions between solute atoms and dislocation core as well as among solute atoms themselves. The latter leads to the prediction of a wetting transition at the dislocation core with respect to varying temperature, solute concentration, or dislocation velocity. The transition temperatures obtained during heating and cooling are different from each other, leading to a hysteresis loop in the solute concentration-temperature plot and the solute concentration-velocity plot. These predictions could provide new insights into the phenomena of sharp yield point drop and strain aging observed in metal alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials, Oxford Science Publications, Clarendon Press, Oxford, England, 1995.

    Google Scholar 

  2. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., John Wiley & Sons, New York, NY, 1982.

    Google Scholar 

  3. J.D. Ven der Waals: Konink. Akad. Weten. Amsterdam, Sec. 1, 1893, vol. 1, p. 8. English translation (with commentary): J.S. Rowlinson: J. Stat. Phys., 1979, vol. 20, pp. 197–200.

    Google Scholar 

  4. L.D. Landau: Sov. Phys. JETP, 1937, vol. 7, p. 19.

    CAS  Google Scholar 

  5. E.M. Lifshitz: Sov. Phys. JETP, 1941, vol. 11, p. 269.

    Google Scholar 

  6. A. Einstein: Ann. d. Physik, 1910, vol. 33, p. 1275.

    CAS  Google Scholar 

  7. L.S. Ornstein and F. Zernicke: Proc. Acad. Sci. Amst., 1914, vol. 17, pp. 793–806.

    Google Scholar 

  8. M.A. Krivoglaz and A.A. Smirnov: Theory of Ordering Alloys, State Publishing House for Physical and Mathematical Science, Moscow, U.S.S.R., 1958.

    Google Scholar 

  9. J.W. Cahn and J.E. Hilliard: J. Chem. Phys., 1958, vol. 28, pp. 258–67.

    Article  CAS  Google Scholar 

  10. S. Ono: Mem. Fac. Eng. Kyushu Univ., 1947, vol. 10, p. 195.

    CAS  Google Scholar 

  11. M. Hillert: D.Sc. Thesis, Massachusetts Institute of Technology, Boston, MA, 1956.

    Google Scholar 

  12. M. Hillert: Acta Metall., 1961, vol. 9, pp. 525–35.

    Article  CAS  Google Scholar 

  13. T. Ericsson: Acta Metall., 1966, vol. 14, pp. 1073–84.

    Article  Google Scholar 

  14. M. Hillert and B. Sundman: Acta Metall., 1976, vol. 24, pp. 731–43.

    Article  CAS  Google Scholar 

  15. P. Wynblatt and R.C. Ku: Surf. Sci., 1977, vol. 65, pp. 511–31.

    Article  CAS  Google Scholar 

  16. Y.W. Lee and H.I. Aaronson: Surf. Sci., 1980, vol. 95, pp. 227–44.

    Article  CAS  Google Scholar 

  17. S.A. Dregia and P. Wynblatt: Acta Metall., 1991, vol. 39, pp. 771–78.

    Article  CAS  Google Scholar 

  18. P. Wynblatt and Y.S. Liu: J. Vac. Sci. Technol., A, 1992, vol. 10, pp. 2709–17.

    Article  CAS  Google Scholar 

  19. P. Wynblatt, A. Saúl, and D. Chatain: Acta Metall., 1998, vol. 46, pp. 2337–47.

    CAS  Google Scholar 

  20. N. Ma, S.A. Dregia, and Y. Wang: Acta Mater., 2003, vol. 51, pp. 3687–700.

    Article  CAS  Google Scholar 

  21. Y.U. Wang, Y.M. Jin, A.M. Cuitino, and A.G. Khachaturyan: Appl. Phys. Lett., 2001, vol. 78, pp. 2324–26.

    Article  CAS  Google Scholar 

  22. Y.U. Wang, Y.M. Jin, A.M. Cuitino, and A.G. Khachaturyan: Acta Mater., 2001, vol. 49, pp. 1847–57.

    Article  CAS  Google Scholar 

  23. C. Shen and Y. Wang: Acta Mater., 2003, vol. 51, pp. 2595–601.

    Article  CAS  Google Scholar 

  24. C. Shen and Y. Wang: Acta Mater., 2004, vol. 52, pp. 683–91.

    Article  CAS  Google Scholar 

  25. A.H. Cottrell: Report of a Conference on Strength of Solids, Mott NF, ed., The Physical Society, London, England, 1948.

    Google Scholar 

  26. A.H. Cottrell and M.A. Jaswon: Proc. R. Soc. London, Ser. A, 1949, vol. 199A, pp. 104–14.

    Google Scholar 

  27. A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc., 1949, vol. 62A, pp. 49–62.

    CAS  Google Scholar 

  28. H. Yoshinage and S. Morozumi: Philos. Mag., 1971, vol. 23, p. 1367.

    Google Scholar 

  29. S. Takeuchi and A.S. Argon: Philos. Mag., 1979, vol. 40, pp. 65–75.

    CAS  Google Scholar 

  30. R. Fuentes-Samaniego and J.P. Hirth: Phys. Stat. Solidi B, 1981, vol. 106, pp. 359–71.

    CAS  Google Scholar 

  31. R. Fuentes-Samaniego, R. Gasca-Neri, and J.P. Hirth: Philos. Mag., 1984, vol. 49, pp. 31–43.

    CAS  Google Scholar 

  32. R. Fuentes-Samaniego and J.P. Hirth: Phys. Stat. Solidi B, 1984, vol. 121, pp. 101–09.

    CAS  Google Scholar 

  33. A. Portevin and F. Le Chatelier: C.R. Acad. Sci., 1923, vol. 176, pp. 507–10.

    CAS  Google Scholar 

  34. C. Shen, A. Kazaryan, P.M. Anderson, and Y. Wang: in Proceedings of the Second International Conference on Computational Nanoscience and Nanotechnology, M. Laudon and B. Romanowicz, eds., Computational Publications, Cambridge, MA, 2002, pp. 259–62.

    Google Scholar 

  35. C.L. Rohrer: J. Mater. Res., 1995, vol. 10, pp. 578–90.

    CAS  Google Scholar 

  36. R.W. Smith, R. Najafabadi, and D.J. Srolovitz: Acta Metal. Mater., 1995, vol. 43, pp. 3621–32.

    Article  CAS  Google Scholar 

  37. S.Y. Hu and L.Q. Chen: Acta Mater., 2001, vol. 49, pp. 463–72.

    Article  CAS  Google Scholar 

  38. Y. Wang, D.J. Srolovitz, J.M. Rickman, and R. Lesar: Acta Mater., 2000, vol. 48, pp. 2163–75.

    Article  CAS  Google Scholar 

  39. S.Y. Hu, Y.L. Li, Y.X. Zheng, and L.Q. Chen: Int. J. Plast., 2004, vol. 20, pp. 403–25.

    Article  Google Scholar 

  40. J.K. Lee: Metall. Mater. Trans. A, 1998, vol. 29, pp. 2039–48.

    Article  Google Scholar 

  41. F. Leonard and R. Desai: Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 58, pp. 8277–88.

    CAS  Google Scholar 

  42. D. Rodney and A. Finel: MRS Symp Proc., 2000, vol. 652, Y4.9.1-Y4.9.6.

    Google Scholar 

  43. S.Y. Hu and L.Q. Chen: Comput. Mater. Sci., 2002, vol. 23, pp. 270–82.

    Article  Google Scholar 

  44. A.N. Guluoglu: Scr. Mater., 1997, vol. 36, pp. 123–28.

    Article  Google Scholar 

  45. K.J. Draheim and J. Schlipf: Comput. Mater. Sci., 1996, vol. 5, pp. 67–74.

    Article  CAS  Google Scholar 

  46. A.G. Khachaturyan: Theory of Structural Transformations in Solids, John Wiley & Sons, New York, NY, 1983.

    Google Scholar 

  47. A.G. Khachaturyan: Sov. Phys. Solid State, 1967, vol. 8, pp. 2163–68.

    Google Scholar 

  48. A.G. Khachaturyan and G.A. Shatalov: Sov. Phys. Solid State, 1969, vol. 11, p. 118.

    Google Scholar 

  49. D.Y. Li and L.Q. Chen: Acta Mater., 1998, vol. 46, pp. 639–49.

    Article  CAS  Google Scholar 

  50. C. Shen and Y. Wang: in Handbook of Materials Modeling, S. Yip, ed., Springer, printed in The Netherlands, 2005, pp. 2117–42.

    Google Scholar 

  51. C. Shen, M.J. Mills, and Y. Wang: MRS Symp. Proc., 2003, vol. 753, pp. 309–41.

    CAS  Google Scholar 

  52. Y.U. Wang, Y.M. Jin, and A.G. Khachaturyan: Acta Mater., 2003, vol. 51, pp. 4209–23.

    Article  CAS  Google Scholar 

  53. R.E. Peierls: Proc. Phys. Soc., 1940, vol. 52, pp. 34–37.

    Article  Google Scholar 

  54. F.R.N. Nobarro: Proc. Phys. Soc., 1947, vol. 59, pp. 256–92.

    Article  Google Scholar 

  55. J.W. Cahn: J. Chem. Phys., 1977, vol. 66, pp. 3667–72.

    Article  CAS  Google Scholar 

  56. C.R. Helms: Surf. Sci., 1977, vol. 69, pp. 689–701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the “Hillert Symposium on Thermodynamics & Kinetics of Migrating Interfaces in Steels and Other Complex Alloys,” December 2–3, 2004, organized by The Royal Institute of Technology in Stockholm, Sweden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, N., Shen, C., Dregia, S.A. et al. Segregation and wetting transition at dislocations. Metall Mater Trans A 37, 1773–1783 (2006). https://doi.org/10.1007/s11661-006-0119-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0119-6

Keywords

Navigation