Skip to main content
Log in

Atomistic simulations of grain boundary migration in copper

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

While the motion of twist boundaries can be readily studied by atomistic simulations with molecular dynamics (MD) under the action of an elastic driving force, the approach fails for tilt boundaries. This is due to the interaction of the elastic stress with the grain boundary (GB) structure, which causes plastic strain by GB sliding. A novel concept, the orientation correlated driving force, is introduced to circumvent this problem. It is shown that this concept can be successfully applied to the study of the migration of tilt boundaries. The migration behavior of several twist and tilt GBs was investigated. The transition from low-to high-angle boundaries can be captured, and a structural transition of tilt boundaries was found at high temperatures, which also affected the migration behavior. The results compare well with experimental results of the motion high-angle boundaries, but for low-angle boundaries, the agreement is poor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Aust and J.W. Rutter: Trans. AIME, 1959, vol. 215 pp. 119–27.

    CAS  Google Scholar 

  2. B. Liebmann, K. Lücke, and G. Masing: Z. Metallkd., 1956, vol. 47, pp. 57–63.

    CAS  Google Scholar 

  3. B.S. Bokstein, C.V. Kopetzkii, and L.S. Shvindlerman: Thermodynamics and Kinetics of Grain Boundaries, Metallurgica, Moscow, 1986, p. 224.

    Google Scholar 

  4. L.S. Shvindlerman, G. Gottstein, and D.A. Molodov: Phys. Status Solidi, 1997, vol. 160, pp. 419–29.

    Article  CAS  Google Scholar 

  5. G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals—Thermodynamics, Kinetics, Applications, CRC Press, Boca Raton, FL, 2000.

    Google Scholar 

  6. M. Winning, G. Gottstein, and L.S. Shvindlerman: Acta Mater., 2002, vol. 50, pp. 353–63.

    Article  CAS  Google Scholar 

  7. D.A. Molodov, U. Czubayko, G. Gottstein, and L.S. Shvindlerman: Scripta Mater., 1995, vol. 32, pp. 529–34.

    Article  CAS  Google Scholar 

  8. S.E. Babcock and R.W. Balluffi: Acta Metall., 1989, vol. 37, pp. 2367–76.

    Article  CAS  Google Scholar 

  9. B. Schönfelder, D. Wolf, S.R. Phillpot, and M. Furtkamp: Interface Sci., 1997, vol. 5, pp. 245–62.

    Article  Google Scholar 

  10. R.-J. Jhan and P.D. Bristowe: Scripta Metall. Mater., 1990, vol. 24, pp. 1313–18.

    Article  CAS  Google Scholar 

  11. I. Majid and P.D. Bristowe: Scripta Metall., 1987, vol. 21, pp. 1153–57.

    Article  Google Scholar 

  12. J.M. Rickman, S.R. Phillpot, D. Wolf, D.L. Woodraska, and S. Yip: J. Mater. Res., 1991, vol. 6, pp. 2291–304.

    CAS  Google Scholar 

  13. G.H. Bishop, Jr., R.J. Harrison, T. Kwok, and S. Yip: J. Appl. Phys. 1982, vol. 53, pp. 5596–608.

    Article  CAS  Google Scholar 

  14. G.H. Bishop, Jr., R.J. Harrison, T. Kwok, and S. Yip: J. Appl. Phys., 1982, vol. 53, pp. 5609–16.

    Article  CAS  Google Scholar 

  15. G.H. Bishop, Jr., R.J. Harrison, T. Kwok, and S. Yip: in Simulation of Grain Boundaries at Elevated Temperatures by Computer Molecular Dynamics in Progress in Materials Science, Chalmers Anniversary Volume, J.W. Christian, P. Haasen, and T.B. Massalski, eds., Pergamon Press Ltd., 1981, pp. 49–95.

  16. M. Upmanyu, R.W. Smith, and D.J. Srolovitz: Interface Sci., 1998, vol. 6, pp. 41–58.

    Article  CAS  Google Scholar 

  17. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein: Acta Mater., 1999, vol. 47, pp. 3901–14.

    Article  CAS  Google Scholar 

  18. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein: Interface Sci., 1998, vol. 6, pp. 287–98.

    CAS  Google Scholar 

  19. B. Schönfelder, G. Gottstein, and L.S. Shvindlerman: Acta Mater., 2005, vol. 53, pp. 1597–609.

    Article  CAS  Google Scholar 

  20. D. Turnbull: Trans. AIME, 1951, vol. 191, pp. 661–65.

    Google Scholar 

  21. N.F. Mott: Proc. Phys. Soc., 1948, vol. 60, pp. 391–94.

    Article  Google Scholar 

  22. D.A. Molodov: Habilitationsschrift, Migration of High-Angle Grain Boundaries in Metals, Fakultät für Bergbau, Hüttenwesen und Geowis-senschaften, Institut für Metallkunde und Metallphysik, RWTH Aachen, 1999, published and available by Shaker Verlag, Aachen, 1999.

  23. G. Gottstein and L.S. Shvindlerman: Interface Sci., 1998, vol. 6, pp. 265–76.

    CAS  Google Scholar 

  24. B.J. Adler and T.E. Wainwright: J. Chem. Phys., 1959, vol. 31, pp. 459–66.

    Article  Google Scholar 

  25. M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids, Clarendon Press, Oxford, 1989.

    Google Scholar 

  26. S. Nose: Mol. Phys., 1986, vol. 57, pp. 187–91.

    Article  CAS  Google Scholar 

  27. D. Wolf: Acta Metall., 1989, vol. 37, pp. 1983–93.

    Article  CAS  Google Scholar 

  28. D. Wolf: in Materials Interfaces: Atomic-Level Structure and Properties, D. Wolf and S. Yip, eds., Chapman and Hall, 1992, ch. 3, pp. 87–151.

  29. M. Doyama and Y. Kogure: Comp. Mater. Sci., 1999, vol. 14, pp. 80–83.

    Article  CAS  Google Scholar 

  30. D. Wolf and J.F. Lutsko: Z. Kristallogr., 1989, vol. 189, pp. 239–62.

    Article  Google Scholar 

  31. V.A. Ivanov, D.A. Molodov, L.S. Shvindlerman, and G. Gottstein: Mat. Sci. Forum, 2004, vol. 467–470, pp. 751–56.

    Article  Google Scholar 

  32. M. Winning, G. Gottstein, and L.S. Shvindlerman: Acta Mater., 2000, vol. 49, pp. 211–19.

    Article  Google Scholar 

  33. M. Parrinello and A. Rahman: J. Appl. Phys., 1981, vol. 52, pp. 7182–90.

    Article  CAS  Google Scholar 

  34. J.F. Lutsko, D. Wolf, S. Yip, S.R. Phillpot, and T. Nguyen: Phys. Rev. B: Condens. Matter Mater. Phys., 1988, vol. 38, pp. 11572–081.

    Google Scholar 

  35. A.S. Clarke and H. Jonsson: Phys. Rev. E, 1993, vol. 47, pp. 3975–84.

    Article  CAS  Google Scholar 

  36. D. Faken and H. Jonsson: Comp. Mater. Sci., 1994, vol. 2, pp. 279–86.

    Article  CAS  Google Scholar 

  37. B. Schönfelder: Ph.D. Thesis, Fakultät für Georessourcen und Materialtechnik, Institut für Metallkunde und Metallphysik, RWTH Aachen, 2004.

  38. M. Winning: Z. Metallkd., 2004, vol. 95, pp. 233–38.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the “Hillert Symposium on Thermodynamics & Kinetics of Migrating Interfaces in Steels and Other Complex Alloys,” December 2–3, 2004, organized by The Royal Institute of Technology in Stockholm, Sweden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönfelder, B., Gottstein, G. & Shvindlerman, L.S. Atomistic simulations of grain boundary migration in copper. Metall Mater Trans A 37, 1757–1771 (2006). https://doi.org/10.1007/s11661-006-0118-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0118-7

Keywords

Navigation