Skip to main content
Log in

Crystallography and interphase boundary of (MnS + VC) complex precipitate in austenite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Crystallography and interphase boundary of (MnS + VC) complex precipitates formed in austenite (γ) matrix are studied by transmission electron microscopy (TEM) in an austenitic Fe-36 mass pct Ni alloy containing small amounts of manganese, sulfur, vanadium, and carbon. When VC is formed directly within the γ matrix grain, it displays a cube-cube orientation relationship (OR) with respect to γ. When VC is formed on MnS, which precipitated in γ with a cube-on-edge OR, three distinctive VC/γ ORs are found: (1) \(\left( {111} \right)_\gamma \parallel \left( {001} \right)_{VC} , \left[ {1\bar 10} \right]_\gamma \parallel \left[ {1\bar 10} \right]_{VC} \), (2) the cube-cube OR, and (3) the cube-on-edge OR. The MnS/γ OR becomes irrational after γ recrystallization. When VC forms on such incoherent MnS particles, which hold irrational ORs with respect to γ matrix, a wide variety of VC/γ ORs are observed. Geometrical analysis by near coincidence site lattice (NCS) model achieves reasonable success in explanation of the observed planar facets for VC precipitates having rational ORs with respect to γ. However, as for the VC formed on the incoherent MnS with irrational ORs, there is rather poor agreement between observation and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Takamura and S. Mizoguchi: Proc. 6th Int. Iron and Steel Congr., ISIJ, Nagoya, 1990, pp. 591–97.

    Google Scholar 

  2. F. Ishikawa, T. Takahashi, and T. Ochi: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 929–36.

    CAS  Google Scholar 

  3. A. Ohmori, K. Oi, F. Kawabata, and K. Amano: Tetsu-to-Hagané, 1998, vol. 84, pp. 797–803.

    CAS  Google Scholar 

  4. T. Furuhara and T. Maki: Proc. J. Jonas Int. Symp., CIM, Montreal, 2001, pp. 465–73.

    Google Scholar 

  5. T. Furuhara, J. Yamaguchi, N. Sugita, G. Miyamoto, and T. Maki: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 1630–39.

    CAS  Google Scholar 

  6. G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki, and R. Uemori: Scripta Mater., 2003, vol. 47, pp. 371–77.

    Google Scholar 

  7. Z.H. Guo, N. Kimura, S. Tagashira, T. Furuhara, and T Maki: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 1033–41.

    CAS  Google Scholar 

  8. T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura, and T. Maki: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 2028–37.

    CAS  Google Scholar 

  9. Y. Yazawa, T. Furuhara, and T. Maki: Acta Mater., 2004, vol. 52, pp. 3727–36.

    Article  CAS  Google Scholar 

  10. T. Furuhara, K. Oishi, and T. Maki: Mater. Metall. Trans. A, 2002, vol. 33A, pp. 2327–35.

    CAS  Google Scholar 

  11. Q. Liang and W.T. Reynolds, Jr.: Mater. Metall. Trans. A, 1998, vol. 29A, pp. 2059–72.

    Article  CAS  Google Scholar 

  12. J.M. Howe, W.T. Reynolds Jr., and V.K. Vasudevan: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2391–411.

    CAS  Google Scholar 

  13. W.T. Reynolds Jr., J.F. Nie, W.Z. Zhang, J.M. Howe, H.I. Aaronson, and G.R. Purdy: Scripta Mater., 2003, vol. 49, pp. 405–09.

    Article  CAS  Google Scholar 

  14. P. Li, J.M. Howe, and W.T. Reynolds, Jr.: Acta Mater., 2004, vol. 52, pp. 239–48.

    Article  CAS  Google Scholar 

  15. K.A. Taylor: Scripta Metall. Mater., 1995, vol. 32, pp. 7–12.

    Article  CAS  Google Scholar 

  16. E.T. Turkdogan, S. Ignatowicz, and J. Pearson: J. Iron Steel Inst., 1955, vol. 180, pp. 349–54.

    CAS  Google Scholar 

  17. V. Bhattacharya and K. Chattopadhyay: Acta Mater., 2004, vol. 52, pp. 2293–304.

    Article  CAS  Google Scholar 

  18. D. Turnbull: Impurity and Imperfections, ASM INTERNATIONAL, Metals Park, OH, 1955, pp. 121–44.

    Google Scholar 

  19. A.H. Cottrell: Mater. Sci. Technol., 1994, vol. 10, pp. 22–26.

    CAS  Google Scholar 

  20. A.H. Cottrell: Mater. Sci. Technol., 1994, vol. 10, pp. 788–92.

    CAS  Google Scholar 

  21. Z.-G. Yang and M. Enomoto: Acta Mater., 1999, vol. 47, pp. 4515–24.

    Article  CAS  Google Scholar 

  22. L.M. Liu, S.Q. Wang, and H.Q. Ye: Acta Mater., 2004, vol. 52, 3681–88.

    Article  CAS  Google Scholar 

  23. P. Lu and F. Cosandey: Acta Metall. Mater., 1992, vol. 40S, pp. 259–66.

    Google Scholar 

  24. F.R. Chen, S.K. Chiou, L. Chang, and C.S. Hong: Ultramicroscopy, 1994, vol. 54, pp. 179–91.

    Article  CAS  Google Scholar 

  25. D.A. Shashkov, M.F. Chisholm, and D.N. Seidman: Acta Mater., 1998, vol. 47, pp. 3939–51.

    Article  Google Scholar 

  26. S. Onaka, N. Kobayashi, T. Fujii, and M. Kato: Mater. Sci. Eng. A, 2003, vol. A347, pp. 42–49.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the “Hume-Rothery Symposium on Structure and Diffusional Growth Mechanisms of Irrational Interphase Boundaries,” which occurred during the TMS Winter meeting, March 15–17, 2004, in Charlotte, NC, under the auspices of the TMS Alloy Phases Committee and the co-sponsorship of the TMS-ASM Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuhara, T., Maki, T. & Kimori, T. Crystallography and interphase boundary of (MnS + VC) complex precipitate in austenite. Metall Mater Trans A 37, 951–959 (2006). https://doi.org/10.1007/s11661-006-0068-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0068-0

Keywords

Navigation