Skip to main content
Log in

Comparative microstructural characterization of a friction-stir-welded aluminum alloy using TEM and SEM-based techniques

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Comparison is made between images collected using four different transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques from the same region of a commercial Al alloy processed by friction-stir welding. The techniques include conventional bright-field TEM, electron-channeling contrast (ECC) imaging using SEM, gallium-enhanced microscopy (GEM), and the electron backscattered diffraction (EBSD) technique. It is found that for a microstructure with a large range of misorientations, only investigation with TEM is capable of revealing all the dislocation boundaries present in a given region, although this requires careful tilting. Single-tilt TEM images, EBSD maps, as well as ECC and GEM images miss a certain population of boundaries, which can lead to erroneous results when the boundary spacing is evaluated. For the EBSD data, the calculated fraction of high-angle boundaries can vary over a large range, depending on the choice of data-processing parameters. The number of missed boundaries is relatively small for the single-tilt TEM images, GEM images, and postprocessed (filtered) EBSD maps. These images can, therefore, be considered to give a good compromise between the required experimental effort and the resulting data quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    Article  CAS  Google Scholar 

  2. J.H. Driver, D.J. Jensen, and N. Hansen: Acta Metall. Mater., 1994, vol. 42, pp. 3105–14.

    Article  CAS  Google Scholar 

  3. Q. Liu, C. Maurice, J. Driver, and N. Hansen: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2333–44.

    Article  CAS  Google Scholar 

  4. X. Huang and D.J. Jensen: in Electron Backscatter Diffraction in Materials Science, A.J. Schwartz et al., eds., Kluwer Academic/Plenum Publishers, New York, NY, 2000, pp. 265–76.

    Google Scholar 

  5. M.C. Demirel, B.S. El-Dasher, B.L. Adams, and A.D. Rollett: in Electron Backscatter Diffraction in Materials Science, A.J. Schwartz et al., eds., Kluwer Academic/Plenum Publishers, New York, NY, 2000, pp. 65–74.

    Google Scholar 

  6. D.P. Field and H. Weiland: in Electron Backscatter Diffraction in Materials Science, A.J. Schwartz et al., eds., Kluwer Academic/Plenum Publishers, New York, NY, 2000, pp. 199–212.

    Google Scholar 

  7. F.J. Humphreys, P.S. Bate, and P.J. Hurley: J. Microsc., 2001, vol. 1, pp. 50–58 and 201.

    Article  Google Scholar 

  8. J. Hagström, O.V. Mishin, and B. Hutchinson: Scripta Mater., 2003, vol. 49, pp. 1035–40.

    Article  Google Scholar 

  9. H.-E. Ekström, O.V. Mishin, and L. Östensson: Proc. ICAA9, J.F. Nie, A.J. Morton, and B.C. Muddle, eds., Institute of Materials Engineering Australasia Ltd., Brisbane, Australia, 2004, pp. 252–57.

    Google Scholar 

  10. J. Hagström: Proc. ICAA9, J.F. Nie, A.J. Morton, and B.C. Muddle, eds., Institute of Materials Engineering Australasia Ltd., Brisbane, Australia, 2004, pp. 305–11.

    Google Scholar 

  11. H. Jin, S. Saimoto, M. Ball, and P.L. Threadgill: Mater. Sci. Technol., 2001, vol. 17, pp. 1605–14.

    CAS  Google Scholar 

  12. D.P. Field, T.W. Nelson, Y. Hovanski, and K.V. Jata: Metall. Mater. Trans A, vol. 32A, 2001, pp. 2869–77.

    CAS  Google Scholar 

  13. K.V. Jata and S.L. Semiatin: Scripta Mater., 2000, vol. 43, pp. 743–49.

    Article  CAS  Google Scholar 

  14. Ø. Frigaard, Ø. Grong, and O.T. Midling: Metall. Mater. Trans A, 2001, vol. 32A, pp. 1189–1200.

    Article  CAS  Google Scholar 

  15. B. Heinz and B. Skrotzki: Metall. Mater. Trans B, 2002, vol. 33B, pp. 489–98.

    CAS  Google Scholar 

  16. R.W. Fonda and J.F. Bingert: Metall. Mater. Trans A, 2004, vol. 35A, pp. 1487–99.

    Article  CAS  Google Scholar 

  17. Q. Liu: Ultramicroscopy, 1995, vol. 60, pp. 81–89.

    Article  CAS  Google Scholar 

  18. W.Q. Cao, A. Godfrey, and Q. Liu: Mater. Sci. Eng. A, 2003, vol. A361, pp. 9–14.

    CAS  Google Scholar 

  19. W.Q. Cao, A. Godfrey, and Q. Liu: J. Microsc., 2003, vol. 211, pp. 219–29.

    CAS  Google Scholar 

  20. O.V. Mishin, A. Godfrey, Q. Liu, and D.J. Jensen: Proc. 25th Risø Int. Symp. on Materials Science, C. Gundlach, K. Haldrup, N. Hansen, X. Huang, D. Juul Jensen, T. Leffers, Z.J. Li, S.F. Nielsen, W. Pantleon, J.A. Wert, and G. Winther, eds., Risø National Laboratory, Roskilde, Denmark, 2004, pp. 445–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishin, O.V., Östensson, L. & Godfrey, A. Comparative microstructural characterization of a friction-stir-welded aluminum alloy using TEM and SEM-based techniques. Metall Mater Trans A 37, 489–496 (2006). https://doi.org/10.1007/s11661-006-0020-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0020-3

Keywords

Navigation