Skip to main content
Log in

Processing, microstructure, and mechanical properties of cast In-Situ Al(Mg, Ti)-Al2O3(TiO2) composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In-situ particle-reinforced aluminum alloy-based cast composites have been synthesized by solidification of the slurry obtained by dispersion of externally added titanium dioxide (TiO2) particles in molten aluminum at different processing temperatures. Alumina particles (Al2O3) form in situ through chemical reaction of TiO2 particles with molten aluminum. Simultaneously, the chemical reaction also releases titanium, which dissolves into molten aluminum and results in the formation of intermetallic phase Ti(Al1−x ,Fe x )3 during solidification. Increasing the processing temperature increases (1) the amount of elongated as well as blocky intermetallic phase Ti(Al1−x ,Fe x )3, (2) the proportion of alumina particles in the reinforcing oxides, and (3) the porosity content in the resulting cast in-situ composite. The difference in particle content and porosity between the top and the bottom of the cast ingot increases with increasing processing temperature. The hardness of the cast in-situ composite is significantly more than that of the matrix alloy due to the presence of reinforcing particles, but the hardness is greatly impaired by the presence of porosity at the top of the cast ingot. The percent elongation of the cast in-situ composite decreases with increasing processing temperature possibly due to increasing porosity as well as an increasing amount of elongated intermetallic phase, which affects the percent elongation of the matrix alloy. The tensile and yield stresses of the cast in-situ composite decreases with increasing processing temperature again due to increasing porosity, which affects the ultimate tensile stress more than the yield stress. In the cast in-situ composite containing 3.31 ± 0.77 vol pct of porosity, the Brinell hardness is about 6 times its yield stress. The estimated yield stress of the cast in-situ composite at zero porosity as given by the linear least-squares fit appears to increase with particle content at a significantly higher rate than that predicted by the shear-lag model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Aghajanian, J.T. Burke, D.R. White, and A.S. Nagelberg: SAMPE Q., 1989, vol. 34, pp. 817–22.

    CAS  Google Scholar 

  2. K.S. Kumar and J.D. Whittenberger: Mater. Sci. Technol. 1992, vol. 8, pp. 317–30.

    CAS  Google Scholar 

  3. A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, and Y.R. Mahajan: Scripta Metall. Mater., 1990, vol. 24, pp. 873–78.

    Article  CAS  Google Scholar 

  4. L. Christodoulou, D.C. Nagle, and J.M. Brupbacher: U.S. Patent No. 4,751,048, June 14, 1988.

  5. Gotman, M.J. Koczak, and E. Shtessel: Mater. Sci. Eng., 1994, vol. A187, pp. 189–99.

    CAS  Google Scholar 

  6. David C. Dunand: in Processing and Fabrication of Advanced Materials III, V.A. Ravi, T.S. Srivatsan, and J.J. Moore, eds., TMS, Warrendale, PA, 1994, pp. 771–93.

    Google Scholar 

  7. M.J. Koczak and M.K. Premkumer: JOM, 1993, vol. 45, pp. 44–8.

    CAS  Google Scholar 

  8. M.S. Newkirk, A.W. Urquhart, H.R. Zwicker, and E. Breval: J. Mater. Res., 1986, vol. 1, pp. 81–89.

    CAS  Google Scholar 

  9. T. Watari, T. Torikai, Y. Imaoka, W.P. Tai, and O. Matsuda: Key Eng. Mater., 1999, vols. 159–160, pp. 331–38.

    Article  Google Scholar 

  10. P.C. Maity, P.N. Chakraborty, and S.C. Panigrahi: Mater. Lett., 1994, vol. 20, pp. 93–97.

    Article  CAS  Google Scholar 

  11. N. Yoshikawa, Y. Watanabe, Z.M. Veloza, A. Kikuchi, and S. Taniguchi: Key Eng. Mater., 1999, vols. 161–63.

  12. T. Fan, D. Zhang, G. Yang, T. Shibayanagi, and M. Naka: J. Mater. Proc. Technol., 2003, vol. 142, pp. 556–61.

    Article  CAS  Google Scholar 

  13. P.C. Maity, P.N. Chakraborty, and S.C. Panigrahi: Mater. Lett., 1997, vol. 30, pp. 147–51.

    Article  CAS  Google Scholar 

  14. R.M. Aikin, Jr.: JOM, 1997, vol. 49, pp. 35–39.

    CAS  Google Scholar 

  15. J. Goňi, I. Mitxelena, and J. Coleto: Mater. Sci. Technol., 2000, vol. 16, pp. 743–46.

    Google Scholar 

  16. Z.Y. Ma, J.H. Li, M. Luo, X.G. Ning, Y.X. Lu, and J. Bi: Scripta Metall. Mater., 1994, vol. 31, pp. 635–39.

    Article  CAS  Google Scholar 

  17. Weijie Lu, Di Zhang, Xiaonong Zhang, and Renji Wu: Scripta Mater., 2001, vol. 44, pp. 1069–75.

    Article  CAS  Google Scholar 

  18. D. Lewis II: in In-Situ Reinforcement of Metal Matrix Composites, R.J. Arsenault and R.K. Everett, eds., Academic Press, Inc., NY, 1991, vol. 32, pp. 121–50.

    Google Scholar 

  19. L.F. Mondolfo: Aluminium Alloys: Structure and Properties, Butterworth and Co., London, NY, 1976, pp. 385–87.

    Google Scholar 

  20. Xiaoming Wang, Animesh Jha, and Rik Brydson: Mater. Sci. Eng., 2004, vol. A364, pp. 339–45.

    CAS  Google Scholar 

  21. C.F. Feng and L. Froyen: Comp. App. Sci. Manufacturing, 2000, vol. A31, pp. 385–90.

    Article  Google Scholar 

  22. P.C. Maity, P.N. Chakraborty, and S.C. Panigrahi: J. Mater. Proc. Technol., 1995, vol. 53, pp. 857–70.

    Article  Google Scholar 

  23. P.C. Maity, S.C. Panigrahi, and P.N. Chakraborty: Scripta Metall. Mater. 1993, vol. 28, pp. 549–52.

    Article  CAS  Google Scholar 

  24. P.K. Balasubramanian, P. Srinivasa Rao, K.G. Sivadasan, K.G. Sathyanarayana, B.C. Pai, and P.K. Rohatgi: J. Mater. Sci. Lett., 1989, vol. 8, pp. 799–801.

    Article  CAS  Google Scholar 

  25. Z.Y. Ma and S.C. Tjong: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1931–42.

    Article  CAS  Google Scholar 

  26. L. Lü, M.O. Lai, Y. Su, H.L. Teo, and C.F. Feng: Scripta Mater., 2001, vol. 45, pp. 1017–23.

    Article  Google Scholar 

  27. C.F. Feng and L. Froyen: Scripta Mater., 1997, vol. 36, pp. 467–73.

    Article  CAS  Google Scholar 

  28. Abdulhaqq A. Hamid, P.K. Ghosh, S.C. Jain, and S. Ray: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2211–23.

    Article  CAS  Google Scholar 

  29. R.C. Weast, ed., Handbook of Chemistry and Physics, 61st ed., CRC Press, Boca Raton, 1980–81, FL, pp. B74 and B128.

    Google Scholar 

  30. Serope Kalpakjian: Manufacturing Engineering and Technology, Addison-Wesley Publishing Company, New York, USA, 1989, p. 78.

    Google Scholar 

  31. P.R. Prasad, S. Ray, J.L. Gaindhar, and M.L. Kapoor: Scripta Metall., 1985, vol. 19, pp. 1019–22.

    Article  CAS  Google Scholar 

  32. V.C. Nardone and K.M. Prewo: Scripta Metall., 1986, vol. 20, pp. 43–48.

    Article  CAS  Google Scholar 

  33. S.K. Nath, S. Ray, and M.L. Kapoor: Met. Mater. Processes, 2002, vol. 14 (3), pp. 241–54.

    CAS  Google Scholar 

  34. R.M. Aikin, Jr. and L. Christodoulou: Scripta Metall. Mater., 1991, vol. 25, pp. 9–14.

    Article  CAS  Google Scholar 

  35. R.J. Arsenault: in Metal Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds., Academic Press, Inc., New York, NY, 1991, pp. 79–100.

    Google Scholar 

  36. P.K. Ghosh, P.R. Prasad and S. Ray: Z. Metallkd., 1984, vol. 75, pp. 934–37.

    CAS  Google Scholar 

  37. P.K. Ghosh and S. Ray: J. Mater. Sci., 1986, vol. 21, pp. 1667–74.

    Article  CAS  Google Scholar 

  38. Y. Chen and D.D.L. Chung: J. Mater. Sci., 1995, vol. 30, pp. 4609–16.

    Article  CAS  Google Scholar 

  39. J.A. Al-jarrah, S. Ray, and P.K. Ghosh: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1711–18.

    Article  CAS  Google Scholar 

  40. P.K. Ghosh and S. Ray: Trans. JIM, 1988, vol. 29, pp. 502–08.

    CAS  Google Scholar 

  41. N.K. Balliger and T. Gladman: Met. Sci., 1981, Mar., pp. 95–102.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamid, A.A., Jain, S.C., Ghosh, P.K. et al. Processing, microstructure, and mechanical properties of cast In-Situ Al(Mg, Ti)-Al2O3(TiO2) composite. Metall Mater Trans A 37, 469–480 (2006). https://doi.org/10.1007/s11661-006-0018-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0018-x

Keywords

Navigation