Skip to main content
Log in

Development of crystallographic texture during high rate deformation of rolled and hot-pressed beryllium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Weakly textured hot-pressed (HP) beryllium and strongly textured hot-rolled beryllium were compressed using a split-Hopkinson pressure bar (SHPB) (strain rate ∼4500 s−1) to a maximum of 20 pct plastic strain as a function of temperature. The evolution of the crystallographic texture was monitored with neutron diffraction and compared to polycrystal plasticity models for the purpose of interpretation. The macroscopic response of the material and the active deformation mechanisms were found to be highly dependent on the orientation of the load with respect to the initial texture. Specifically, twinning is inactive when loaded parallel to the strong basal fiber but accounts for 27 pct of the plastic strain when loaded transverse to the basal fiber. In randomly textured samples, 15 pct of the plastic strain is accomplished by twinning. The role of deformation mechanisms with components out of the basal plane (i.e., twinning and pyramidal slip) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tomé, P. Maudlin, R. Lebensohn, and G. Kaschner: Acta Mater., 2001, vol. 49 (15), pp. 3085–96.

    Article  Google Scholar 

  2. G. Kaschner, J. Bingert, C. Liu, M. Lovato, P. Maudlin, M.G. Stout, and C.N. Tomé: Acta Mater., 2001, vol. 49 (15), pp. 3097–3108.

    Article  CAS  Google Scholar 

  3. P. Rangaswamy, M.A.M. Bourke, D.W. Brown, G.C. Kaschner, R.B. Rogge, Michael G. Stout, and Carlos N. Tomé: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 757–63.

    Article  CAS  Google Scholar 

  4. S. Agnew, M. Yoo, and C. Tomé: Acta Mater., 2001, vol. 49 (20), pp. 4277–89.

    Article  CAS  Google Scholar 

  5. S. Agnew, C. Tomé, D. Brown, T. Holden, and S. Vogel: Scripta Mater., 2003, vol. 48 (8), pp. 1003–08.

    Article  CAS  Google Scholar 

  6. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé: Mater. Sci. Eng. A, 2004, in press.

  7. D. Brown, M. Bourke, B. Clausen, T. Holden, C. Tomé, and R. Varma: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1439–49.

    Article  CAS  Google Scholar 

  8. F. Aldinger: in Beryllium Science and Technology, D. Webster and G.J. London, eds., Plenum Press, New York, NY, 1979, pp. 7–107.

    Chapter  Google Scholar 

  9. S. Jonsson and J. Beuers: Mater. Sci. Eng., 1987, vol. 91, pp. 111–23.

    Article  Google Scholar 

  10. G.J. London, V.V. Damiano, and H. Conrad: Trans. TMS, 1968, vol. 242, pp. 979–94.

    CAS  Google Scholar 

  11. H.J. Saxton and G.J. London: in Beryllium Science and Technology, D. Webster and G.J. London, eds., Plenum Press, New York, NY, 1979, pp. 115–44.

    Chapter  Google Scholar 

  12. R.W. Cahn: Acta Metall., 1953, vol. 1, pp. 50–74.

    Google Scholar 

  13. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, Boston, MA, 1994.

    Google Scholar 

  14. T. Nicholas and M.J. Sever: “Dynamic Compressive Strain Rate Tests on Several Grades of Beryllium,” Final Report Nov. 1973-June 1974; Report No. Tr-74-224, Air Force Materials Lab., Wright-Patterson AFB, OH, 1974.

    Google Scholar 

  15. C. Gasc: in The Metallurgy of Beryllium, Chapman and Hall for the Institute of Metals, London, 1963, pp. 59–67.

    Google Scholar 

  16. W.R. Blumenthal, R.W. Carpenter, G.T. Gray, D.D. Cannon, and S.P. Abeln: Influence of Strain Rate and Temperature on the Mechanical Behavior of Beryllium Shock Compression of Condensed Matter—1997: 10th American Physical Society Topical Conf., AIP Conf. Proc. #429, Amherst, MA, 1997, AIP, vol. 429, 0 pp. 411–14.

  17. K. Bennett, R. Varma, and R.B. Vondreele: Scripta Mater., 1999, vol. 40 (7), pp. 825–30.

    Article  CAS  Google Scholar 

  18. J.J. Mason, A.J. Rosakis, and G. Ravichandran: Mechanics of Materials 1994, vol. 17 (2–3), pp. 135–45.

    Article  Google Scholar 

  19. R.B. Von Dreele: J. Appl. Cryst., 1997, vol. 30, pp. 517–25.

    Article  Google Scholar 

  20. S. Matthies, H. Wenk, and G. Vinel: J. Appl. Cryst., 1988, vol. 21 (UG), pp. 285–304.

    Article  Google Scholar 

  21. U.F. Kocks, C.N. Tomé, and H.R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, United Kingdom, 1998.

    Google Scholar 

  22. D.K. Bowen and J.W. Christian: Phil. Mag., 1965, vol. 12, pp. 369–78.

    Article  Google Scholar 

  23. D.W. Brown, M.A.M., Bourke, P.S. Dunn, R.D. Field, M.G. Stout, and D.J. Thoma: Metall. Mater. Trans. A, 2001, vol. 32 (9), pp. 2219–28.

    Article  Google Scholar 

  24. R.A. Lebensohn and C.N. Tomé: Acta Metall., 1993, vol. 41 (9), pp. 2611–24.

    Article  CAS  Google Scholar 

  25. S. Agnew, J. Horton, and M. Yoo: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 851–58.

    Article  CAS  Google Scholar 

  26. R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand: Mater. Sci. Eng. A, 1999, vol. 275 (SISI), pp. 404–09.

    Article  Google Scholar 

  27. M. Gharghouri, G. Weatherly, J. Embury, and J. Root: Phil. Mag. A, 1999, vol. 79 (7), pp. 1671–95.

    Article  CAS  Google Scholar 

  28. C. Tomé, R. Lebensohn, and C. Necker: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2635–48.

    Article  Google Scholar 

  29. R.D. Field, K.T. Hartwig, C.T. Necker, J.F. Bingert, and S.R. Agnew: Metall. Trans. A, 2002, vol. 33 (3/SISI), pp. 965–72.

    Article  Google Scholar 

  30. E. Schmid and W. Boas: Plasticity of Crystals, Springer, Berlin, 1935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D.W., Abeln, S.P., Blumenthal, W.R. et al. Development of crystallographic texture during high rate deformation of rolled and hot-pressed beryllium. Metall Mater Trans A 36, 929–939 (2005). https://doi.org/10.1007/s11661-005-0287-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0287-9

Keywords

Navigation