Skip to main content
Log in

Cold spray deposition of nanocrystalline aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2005

Abstract

Aluminum 5083 powder was mechanically milled under liquid nitrogen to achieve a nanocrystalline grain size in the range of 20 to 30 nm. The powder was subsequently sprayed using a nozzle designed with a validated numerical model for cold spray technology. The resulting coatings were evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro- and nanoindentation. The TEM analysis shows that the nanocrystalline grain structure of the cryomilled feedstock powder was retained after the cold spray process. A significant increase in hardness from 104 to 261±8 (HV300g) was observed when comparing the nanocrystalline coating with cast, cold-worked, Al 5083. The ability to use cold spray to produce nanocrystalline large deposits was also demonstrated in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Koch: Ann. Rev. Mater. Sci., 2003, vol. 5 (2), pp. 91–99.

    CAS  Google Scholar 

  2. E. Gaffet, N. Malhouroux, and M. Abdellaoui: J. Alloys Compounds, 1993, vol. 194, pp. 339–60.

    Article  CAS  Google Scholar 

  3. C. Suryanarayana: Int. Mater. Rev., 1995, vol. 40, pp. 41–64.

    CAS  Google Scholar 

  4. C.C. Koch: Nanostr. Mater., 1993, vol. 2, pp. 109–29.

    Article  CAS  Google Scholar 

  5. B.J.M. Aikin, T.H. Courtney, and D.R. Maurice: Mater. Sci. Eng., 1991, vol. A147, pp. 229–37.

    CAS  Google Scholar 

  6. F. Zhou, R. Luck, K. Lu, E.J. Lavernia, and M. Ruhle: Phil. Mag. A, 2002, vol. 82 (5), pp. 1003–15.

    Article  CAS  Google Scholar 

  7. C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  8. J. Eckert, J.C. Holzer, C.E. Kill III, and W.L. Johnson: J. Mater. Res., 1992, vol. 7, pp. 1751–61.

    CAS  Google Scholar 

  9. D. Oleszak and P.H. Shingu: J. Appl. Phys., 1996, vol. 79 (6), pp. 2975–80.

    Article  CAS  Google Scholar 

  10. C.C. Koch: Nanostr. Mater., 1997, vol. 9, pp. 13–22.

    Article  CAS  Google Scholar 

  11. F.A. Mohamed and Y. Xun: Mater. Sci. Eng. A, 2003, vol. 354A (1–2), pp. 133–39.

    Google Scholar 

  12. M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone: Mater. Res. Soc. Symp. Proc., 1989, vol. 132, pp. 79–86.

    Google Scholar 

  13. B. Huang, J. Vallone, and M.J. Luton: Nanostr. Mater., 1995, vol. 5, pp. 631–42.

    Article  CAS  Google Scholar 

  14. R.J. Perez, B. Huang, and E.J. Lavernia: Nanostr. Mater., 1996, vol. 7, pp. 565–72.

    Article  CAS  Google Scholar 

  15. J.C. Rawers, R.D. Govier, and G. Korth: Mater. Sci. Forum, 1995, vols. 179–181, pp. 363–68.

    Article  Google Scholar 

  16. F. Zhou, J. Lee, S. Dallek, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 3451–58.

    CAS  Google Scholar 

  17. F. Zhou, R. Rodriguez, and E.J. Lavernia: Mater. Sci. Forum, 2002, vol. 386–388, pp. 409–14.

    Google Scholar 

  18. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  19. X.K. Sun, H.T. Cong, M. Sun, and M.C. Yang: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1017–24.

    Article  CAS  Google Scholar 

  20. V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol 32A, pp. 2335–43.

    Article  CAS  Google Scholar 

  21. R.W. Hayes, R. Rodrigueza, and E.J. Lavernia: Acta Mater., 2001, vol. 49, pp. 4055–68.

    Article  CAS  Google Scholar 

  22. L. Ajdelsztajn, J. Lee, and E.J. Lavernia: Metall. Trans. A, 2002, vol. 33A, pp. 647–55.

    Google Scholar 

  23. L. Ajdelsztajn, F. Tang, G.E. Kim, V. Provenzano, and J.M. Schoenung: Mater. Sci. Eng. A, 2002, vol. A338, pp. 33–43.

    CAS  Google Scholar 

  24. L. Ajdelsztajn, J. He, G.E. Kim, V. Provenzano, E.J. Lavernia, and J.M. Schoenung: Materials Science II, Proc. TMS, San Diego, CA, Mar. 2003, TMS, Warrendale, PA, 2003, pp. 71–80.

    Google Scholar 

  25. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin: Sov. Phys. Dokl., 1990, vol. 35 (12), pp. 1047–49.

    Google Scholar 

  26. C.J. Li and W.Y. Li: Surf. Coating Technol., 2003, vol. 167 (2–3), pp. 278–83.

    Article  CAS  Google Scholar 

  27. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin: J. Appl. Mech. Tech. Phys., 1998, vol. 39 (2), pp. 318–23.

    Article  Google Scholar 

  28. R.C. Dykhuizen and R.A. Neiser: ITSC Proc., 2003, pp. 19–26.

  29. A.N. Papyrin, V.F. Kosarev, S.V. Klinkov, and A.P. Alkhimov: ITSC Proc., 2002, pp. 380–84.

  30. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye: Acta Mater., 2003, vol. 51, pp. 4379–94.

    Article  CAS  Google Scholar 

  31. R.C. Dykhuizen, M.F. Smith, D.L. Gilmorew, and R.A. Neiser: J. Thermal Spray Technol., 1999, vol. 8 (4), pp. 559–64.

    Article  CAS  Google Scholar 

  32. A.P. Alkhimov, S.V. Klkinkov, V.F. Kosarev, and A.N. Papyrin: J. Appl. Mech. Technol. Phys., 1997, vol. 38 (2), pp. 324–30.

    Article  CAS  Google Scholar 

  33. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith: J. Thermal Spray Technol., 1999, vol. 8 (4), pp. 576–82.

    Article  CAS  Google Scholar 

  34. T.H. Van Steenkiste, J.R. Smith, and R.E. Teetse: Surf. Coating Technol., 2002, vol. 154, pp. 237–52.

    Article  Google Scholar 

  35. J. Vlcek, H. Huber, H. Voggenreiter, A. Fischer, E. Lugscheider, and H. Hallen: ITSC Proc., 2001, pp. 417–22.

  36. T.H. Van Steenkiste, J.R. Smith, and R.E. Teetse: Surf. Coating Technol., 1999, vol. 111, pp. 62–71.

    Article  Google Scholar 

  37. R. Morgan, P. Fox, J. Pattison, C. Sutcliffe, and W. O’Neill: Mater. Lett., 2004, vol. 58, pp. 1317–20.

    Article  CAS  Google Scholar 

  38. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16 (4), pp. 938–44.

    CAS  Google Scholar 

  39. R.W. Hayes, V. Tellkamp, and E.J. Lavernia: J. Mater. Res., 2000, vol. 15 (10), pp. 2215–22.

    CAS  Google Scholar 

  40. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia: Acta Mater., 2003, vol. 51, pp. 2777–91.

    CAS  Google Scholar 

  41. B.Q. Han, F.A. Mohamed, and E.J. Lavernia: J. Mater. Sci., 2003, vol. 38 (15), pp. 3319–24.

    Article  CAS  Google Scholar 

  42. X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhou, and E.J. Lavernia: Phil. Mag., 2003, vol. 83 (26), pp. 3065–75.

    Article  CAS  Google Scholar 

  43. B. Q. Han, E.J. Lavernia, and F.A. Mohamed: Phil. Mag. Lett., 2003, vol. 83, pp. 89–96.

    Article  CAS  Google Scholar 

  44. Structural Alloys Handbook, 1996 ed., John M. (Tim) Holt, technical ed., and C.Y. Ho, ed., CINDAS/Purdue University, West Lafayette, IN, 1996.

    Google Scholar 

  45. B. Jodoin: J. Thermal Spray Technol., 2002, vol. 11 (4), pp. 496–507.

    Article  Google Scholar 

  46. W.P. Jones and B.E. Launder: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301–14.

    Article  Google Scholar 

  47. D. Cheng, G. Trapaga, J.W. McKelliget, and E.J. Lavernia: Modelling Simul. Mater. Sci. Eng., 2003, vol. 11, pp. R1-R31.

    Article  CAS  Google Scholar 

  48. A. Jameson: Trans. Am. Soc. Mech. Eng., 1983, vol. 50 (4b), pp. 1052–73.

    Google Scholar 

  49. A.H. Shapiro: The Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press Company, New York, NY, 1956.

    Google Scholar 

  50. X. Li and B. Bhushan: Mater. Characterization, 2002, vol. 48 pp. 11–36.

    Article  CAS  Google Scholar 

  51. C. Suryanarayana and H.G. Norton: X-Ray Diffraction: A Practical Approach, Plenum Press, New York, NY, 1998, p. 207.

    Google Scholar 

  52. Metals Handbook, vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990.

  53. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch: Appl. Surf. Sci., 2003, vol. 219, pp. 211–27.

    Article  CAS  Google Scholar 

  54. B. Crossland: Explosive Welding of Metals and Its Application, Clarendon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  55. H. El-Sobky: in Explosive Welding, Forming and Compaction, T.Z. Blazynski, ed., Applied Science Publishers, London, 1983, ch. 6.

    Google Scholar 

  56. E.O. Hall: Proc. Phys. Soc. (London), 1951, vol. B64, pp. 747–53.

    CAS  Google Scholar 

  57. N.J. Petch: J. Iron. Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11661-005-0099-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajdelsztajn, L., Schoenung, J.M., Jodoin, B. et al. Cold spray deposition of nanocrystalline aluminum alloys. Metall Mater Trans A 36, 657–666 (2005). https://doi.org/10.1007/s11661-005-0182-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0182-4

Keywords

Navigation