Skip to main content
Log in

Atomic diffusion and phase equilibria at the interfaces of the CoAl/Ir multilayer on Nb5Si3-base alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Atomic diffusion and phase equilibria have been investigated at the interfaces of Ir/CoAl and Ir/Nb5Si3 to evaluate the suitability of a diffusion-barrier layer of Ir between an oxidation-resistant layer of B2-CoAl and a base material Nb5Si3. Diffusion couples were prepared by hot pressing and annealed at 1573 K for up to 178 hours. Diffusion layers of (Ir, Co) solid solution and B2-(Ir, Co)Al were formed at the Ir/CoAl interface. The concentration of Al dramatically dropped at the interface, which indicates that the Ir layer effectively works as the diffusion barrier against the inward diffusion of Al. To quantitatively evaluate the potential of Ir as a diffusion barrier, the Boltzmann-Matano analysis was employed to determine the diffusion coefficient of Al using Ir-8 at. pct Al/Ir diffusion couples annealed at temperatures of 1573, 1673, and 1773 K. For instance, an extremely low value of 7.0×10−19 m2/s is evaluated for Ir-4 at. pct Al at 1573 K. At the Ir/Nb5Si3 interface, the intermetallic phases Ir3Si and Ir3Nb are formed on the Ir side and the Nb5Si3 side, respectively. The formation of Ir3Si is controlled by the diffusion of Si through Ir3Nb in which the solubility of Si is limited quite small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Koizumi, T. Kobayashi, T. Yokokawa, M. Osawa, H. Harada, Y. Aoki, and M. Arai: J. Jpn Inst. Met., vol. 68, 2004, pp. 206–209, in Japanese.

    Article  CAS  Google Scholar 

  2. H. Harada: presented at the symp. on Beyond Nickel-base Superalloys, 2004 TMS Spring Meeting, Charlotte, NC, published in Metall. Mater. Trans. A.

  3. R. Sakidja, S. Kim, J.S. Park, and J.H. Perepezko: Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 2003, vol. 753, pp. 59–64.

    Google Scholar 

  4. J.J. Lewandowski, D. Padhi, and S. Solv’yev: Proc. of Intl. Symp. on Structural Intermetallics, Structural Intermetallics 2001, TMS, Warrendale, PA, 2001, pp. 371–80.

    Google Scholar 

  5. N. Sekido, Y. Kimura, and Y. Mishima: Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 2003, vol. 753, pp. 327–32.

    Google Scholar 

  6. S. Miura, Y. Saeki, and T. Mohri: Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 1999, vol. 552, pp. KK6.9.1-KK.6.9.5.

    Google Scholar 

  7. H. Inui, K. Ishikawa, and M. Yamaguchi: Intermetallics, 2000, vol. 8, pp. 1131–45.

    Article  CAS  Google Scholar 

  8. K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi: Intermetallics, 2001, vol. 9, pp. 591–602.

    Article  CAS  Google Scholar 

  9. T. Nakano, Y. Nakai, S. Maeda, and Y. Umakoshi: Acta Mater., 2002, vol. 50, pp. 1781–95.

    Article  CAS  Google Scholar 

  10. F.-G. Wei, Y. Kimura, and Y. Mishima: Intermetallics, 2001, vol. 9, pp. 661–70.

    Article  CAS  Google Scholar 

  11. K. Yoshimi, S. Nakatani, N. Nomura, and S. Hanada: Intermetallics, 2003, vol. 11, pp. 787–94.

    Article  CAS  Google Scholar 

  12. J.H. Schneibel, P.F. Tortorelli, M.J. Kramer, A.J. Thom, J.J. Kruzic, and R.O. Ritchie: Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 2003, vol. 753, pp. 53–58.

    Google Scholar 

  13. L. Heatherly and E.P. George: Acta Mater., 2001, vol. 49, pp. 289–98.

    Article  CAS  Google Scholar 

  14. Y. Yamabe-Mitarai, X. Yu, Y. Gu, Y. Ro, S. Nakazawa, T. Maruko, and H. Harada: Proc. of the 8th Intl. Conference on Creep and Fracture of Engineering Materials and Structures, Key Eng. Mater., vol. 171–174, 2000, pp. 625–32.

    Article  Google Scholar 

  15. Y. Kimura, M. Takahashi, S. Miura, T. Suzuki, and Y. Mishima: Intermetallics, 1995, vol. 3, pp. 413–25.

    Article  CAS  Google Scholar 

  16. Y. Kimura, C.T. Liu, and Y. Mishima: Intermetallics, 2001, vol. 9, pp. 1069–78.

    Article  CAS  Google Scholar 

  17. H. Hosoda, S. Watanabe, and S. Hanada: Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 1999, vol. 552, pp. KK8.33.1-KK8.33.7.

    Google Scholar 

  18. H. Hosoda, Shuichi Miyazaki, and S. Hanada: Intermetallics, 2000, vol. 8, pp. 1081–90.

    Article  CAS  Google Scholar 

  19. H. Hosoda: Tokyo Institute of Technology, Yokohama, Japan, private communication, 2002.

  20. H. Hosoda and K. Wakashima: Mater. Sci. Eng. A, 2003, vol. 352, pp. 16–22.

    Article  CAS  Google Scholar 

  21. Desk Handbook Phase Diagrams for Binary Alloys, H. Okamoto, ed., ASM INTERNATIONAL, Materials Park, PA, 2000, p. 249.

    Google Scholar 

  22. P. Shewmon: Diffusion 9n Solids, 2nd ed., TMS, Warrendale, PA, 1989, pp. 9–51.

    Google Scholar 

  23. Smithells Metals Reference Book, 8th ed., W.F. Gale and T.C. Totemeier, eds., Elsevier Butterworth-Heinemann, Oxford, United Kingdom, 2004, pp. 13-1–13-104.

    Google Scholar 

  24. Desk Handbook Phase Diagrams for Binary Alloys, H. Okamoto, ed., ASM INTERNATIONAL, Materials Park, PA, 2000, p. 34.

    Google Scholar 

  25. P.J. Hill, L.A. Cornish, and M.J. Witcomb: J. Alloys Compounds, 1998, vol. 280, pp. 240–46.

    Article  CAS  Google Scholar 

  26. Y. Kimura, H. Kuriyama, S. Miura, T. Suzuki, and Y. Mishima: Mater. Trans. JIM, 1994, vol. 35, pp. 182–89.

    CAS  Google Scholar 

  27. Y. Kimura, S. Miura, T. Suzuki, and Y. Mishima: Proc. TMS Symp on Experimental Methods of Phase Diagram Determination, TMS, Materials Park, PA, 1993, pp. 113–21.

    Google Scholar 

  28. S. Shiina: Master’s Thesis, Tokyo Institute of Technology, Tokyo, 2003.

    Google Scholar 

  29. N.K. Arkhipova, S.M. Klotsman, I.P. Polikarpova, A.N. Timofeyev, and O.P. Shepatkovskiy: Phys. Met. Metallogr., 1986, vol. 62, pp. 127–32.

    Google Scholar 

  30. Desk Handbook Phase Diagrams for Binary Alloys, H. Okamoto, ed., ASM INTERNATIONAL, Materials Park, PA, 2000, p. 498.

    Google Scholar 

  31. Desk Handbook Phase Diagrams for Binary Alloys, H. Okamoto, ed., ASM INTERNATIONAL, Materials Park, PA, 2000, p. 503.

    Google Scholar 

  32. Desk Handbook Phase Diagrams for Binary Alloys, H. Okamoto, ed., ASM INTERNATIONAL, Materials Park, PA, 2000, p. 602.

    Google Scholar 

  33. Handbook of Ternary Alloy Phase Diagrams, P. Villars, A. Prince, and H. Okamoto, eds., ASM INTERNATIONAL, Materials Park, PA, 1995, vol. 9, pp. 12082–12083.

    Google Scholar 

  34. T. Yamada, K. Miura, M. Kajihara, N. Kurokawa, and K. Sakamoto: J. Mater. Sci., 2004, vol. 39, pp. 1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, Y., Shimizu, T., Mishima, Y. et al. Atomic diffusion and phase equilibria at the interfaces of the CoAl/Ir multilayer on Nb5Si3-base alloys. Metall Mater Trans A 36, 591–599 (2005). https://doi.org/10.1007/s11661-005-0174-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0174-4

Keywords

Navigation