Skip to main content
Log in

Electronic structure and ferromagnetic effect in Ni2MnGa alloy

  • Communications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

By using the first-principles discrete variational method (DVM), we have investigated the magnetic contribution to the binding energy, the Fermi energy level, the interatomic energy, the bond order (BO), the total density of states (DOS), and the charge density distribution for varying c/a in Ni2MnGa alloy. The binding energy curves for the ferromagnetic (FM) phase for varying c/a are more complicated than those in the nonferromagnetic (NM) phase whose energy difference displays the magnetic contribution to the binding of the crystal. The interactions between the central atom Mn and the surrounding atoms, including the interatomic energies and the BOs, are different from each other, which leads to crystal anisotropy. The finding suggests that the interatomic energy difference between the FM and NM phases will be the origin of magnetic anisotropy. The difference in electron density on the different distortions for the FM and NM phases varying with c/a shows the different redistribution of the magnetization for the Mn and Ni in the [110] plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P.J. Webster, K.R.A. Ziebeck, S.L. Town, and M.S. Peak: Phil. Mag. B, 1984, vol. 49B, pp. 295–310.

    Google Scholar 

  2. S. Fujii, S. Ishida, and S. Asano: J. Phys. Soc. Jpn., 1989, vol. 58, pp. 3657–66.

    Article  CAS  Google Scholar 

  3. A. Zheludev, S.M. Shapiro, P. Wochner, A. Schwartz, M. Wall, and L.E. Tanner: Phys. Rev. B, 1995, vol. 51, pp. 11310–11314.

    Article  CAS  Google Scholar 

  4. A. Zheludev, S.M. Shapiro, P. Wochner, and L.E. Tanner: Phys. Rev. B, 1996, vol. 54, pp. 15045–15054.

    Article  CAS  Google Scholar 

  5. A. Planes, E. Obradó, A.G. Comas, and L. Manosa: Phys. Rev. Lett., 1997, vol. 79, pp. 3926–29.

    Article  CAS  Google Scholar 

  6. U. Stuhr, P. Vorderwisch, V.V. Kokorin, and P.-A. Lindgård: Phys. Rev. B, 1997, vol. 56, pp. 14360–14365.

    Article  CAS  Google Scholar 

  7. F. Zuo, X. Su, and K.H. Wu: Phys. Rev. B, 1998, vol. 58, pp. 11127–11130.

    Article  CAS  Google Scholar 

  8. T. Castán, E. Vives, and P.A. Lindgård: Phys. Rev. B, 1999, vol. 60, pp. 7071–84.

    Article  Google Scholar 

  9. A.G. Comas, E. Obradó, L. Mañosa, and A. Planes: Phys. Rev. B, 1999, vol. 60, pp. 7085–90.

    Article  Google Scholar 

  10. W.H. Wang, J.L. Chen, S.X. Gao, G.H. Wu, Z. Wang, Y.F. Zheng, L.C. Zhao, and W.S. Zhan: J. Phys.: Condens. Matter., 2001, vol. 13, pp. 2607–13.

    Article  CAS  Google Scholar 

  11. V.V. Godlevsky and K.M. Rabe: Phys. Rev. B, 2001, vol. 63, 134407, pp. 1–4.

    Article  Google Scholar 

  12. V.V. Khovailo, T. Takagi, A.D. Bozhko, M. Matsumoto, J. Tani, and V.G. Shavrov: J. Phys.: Condens. Matter., 2001, vol. 13, pp. 9655–62.

    Article  CAS  Google Scholar 

  13. V.A. Chernenko, J. Pons, C. Seguí, and E. Cesari: Acta Mater., 2002, vol. 50, pp. 53–60.

    Article  CAS  Google Scholar 

  14. Y.B. Lee, J.Y. Rhee, and B.N. Harmon: Phys. Rev. B, 2002, vol. 66, 054424, pp. 1–6.

    Google Scholar 

  15. J. Enkovaara, A. Ayuela, L. Nordström, and R.M. Nieminen: Phys. Rev. B, 2002, vol. 66, 134422, pp. 1–7.

    Google Scholar 

  16. A. Ayuela, J. Enkovaara, and R.M. Nieminen: J. Phys.: Condens. Matter., 2002, vol. 14, pp. 5325–36.

    Article  CAS  Google Scholar 

  17. H.D. Chopra, C. Ji, and V.V. Kokorin: Phys. Rev. B, 2000, vol. 61, pp. R14913-R14915.

    Article  CAS  Google Scholar 

  18. D.E. Ellis, G.A. Benesch, and E. Byrom: Phys. Rev. B, 1979, vol. 20, pp. 1198–1207.

    Article  CAS  Google Scholar 

  19. B. Delley, D.E. Ellis, A.J. Freeman, E.J. Baerends, and D. Post: Phys. Rev. B, 1983, vol. 27, pp. 2132–44.

    Article  CAS  Google Scholar 

  20. C.Y. Wang, F. An, B.L. Gu, F.S. Liu, and Y. Chen: Phys. Rev. B, 1988, vol. 38, pp. 3905–12.

    Article  CAS  Google Scholar 

  21. F.H. Wang, C.Y. Wang, and J.L. Yang: J. Phys.: Condens. Matter, 1996, vol. 8, pp. 5527–34.

    Article  CAS  Google Scholar 

  22. J. Enkovaara, A. Ayuela, L. Nordström, and R.M. Nieminen: J. Appl. Phys., 2002, vol. 91, pp. 7798–7800.

    Article  CAS  Google Scholar 

  23. R. Tickle and R.D. James: J. Magn. Magn. Mater., 1999, vol. 195, pp. 627–38.

    Article  CAS  Google Scholar 

  24. O. Heczko, K. Jurek, and K. Ullakko: J. Magn. Magn. Mater., 2001, vol. 226, pp. 996–98.

    Article  Google Scholar 

  25. P.J. Brown, A.Y. Bargawi, J. Crangle, K.-U. Neumann, and K.R.A. Ziebeck: J. Phys.: Condens. Matter, 1999, vol. 11, pp. 4715–22.

    Article  CAS  Google Scholar 

  26. O. Hjortstam, K. Baberschke, J.M. Wills, B. Johansson, and O. Eriksson: Phys. Rev. B, 1997, vol. 55, pp. 15026–15032.

    Article  CAS  Google Scholar 

  27. H.J. Williams and R.M. Bozorth: Phys. Rev., 1939, vol. 56, p. 837.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the National Science Foundation of China under Grant No. 50301011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, J.F., Chen, S.P., Hsu, T.Y. et al. Electronic structure and ferromagnetic effect in Ni2MnGa alloy. Metall Mater Trans A 36, 262–267 (2005). https://doi.org/10.1007/s11661-005-0159-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0159-3

Keywords

Navigation