Skip to main content
Log in

A parallel macro/micro elastoplasticity model for aluminum deformation and comparison with experiments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A finite-element-based macro/micro crystal plasticity model is presented for large deformation of metals. The model development is based on the updated Lagrangian approach for large plastic deformation, coupled with a micromechanical description of multisurface plastic flows associated with individual single crystals. The macroscopic Lagrangian description of deformation processes uses either the hypoelastoplasticity formulation, with the incremental objective stress-time integration scheme, or the hyperelastoplasticity formulation, with the total formulation based on multiplicative decomposition. The macroscopic stress is linked to the microstructural behavior of crystals by tracking the motion of each active dislocation in slip systems underlining the plastic deformation. The microscopic treatment entails a multisurface-type stress-update algorithm, which ensures the plastic deformation defined by each slip system to be on the local yield surface. During each increment, the number of slip systems active during deformation is determined by either the single-value decomposition (SVD) technique or the diagonal-shift method. Simulations using these types of microscale models can be computationally intensive, especially when a large number of crystals are applied. For these cases, a parallel computing algorithm can be particularly efficient, and numerical tests show that, for these cases, which often are used in simulations for more realistic deformation processes, the computational time approaches asymptotically the theoretical limit of the parallel processing. The parallel macro/micro model is checked with various benchmark deformation and micromechanical testing problems reported in literature. Numerical simulations are carried out and results are compared with measurements of individual crystallite orientations made intermittently during the deformation of a low-angle bicrystal and a two-dimensional columnar-grained, multicrystal aluminum sample in channel-die compression. Texture development in a copper sample being flat-rolled under commercial operating conditions is also predicted using the micro/macro model and is compared with the measured data. For all these cases, the macro/micro model predictions are in reasonably good agreement with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

finite element matrix

b :

body force

Ĉ :

right Cauchy-Green Tensor

C :

constitutive matrix

D ij :

ij component of strain rate tensor

D αβ :

α, β the component of matrix D

F :

deformation gradient tensor

g :

slip resistance

h,h αβ :

hardening moduli, αβ component of element of hardening matrix

H :

plastic modulus

H 1 :

finite element matrix

I :

identity tensor

J :

Jacobian

K :

stiffness matrix

L :

velocity gradient tensor

l :

constitutive 4th order tensor

l v :

Lie derivative

n :

normal

\(\hat P\) :

co-variant tensor field

P :

stress power

\(\hat Q\) :

contra-variant tensor field

q :

cross hardening parameter

R :

Reaction force

S ij , S α :

ij component of first Piola-Kirchhoff stress tensor, αth slip direction

S 0, S s :

initial and saturated slip deformation resistance

\(\hat S\) :

second Piola-Kirchhoff stress tensor

U :

Nodal displacement vector

v :

velocity

t :

time

ie255-6a :

traction

x, X :

x-coordinate of current and initial configurations

σ :

Cauchy stress tensor

\(\bar \sigma \) :

effective tensor

τ :

Kirchhoff stress tensor

τ s :

resolved shear stess

λ:

plastic parameter

\(\dot \gamma \) :

flow rate

ρ:

density

Ω:

domain of integration

∂Ω:

boundary of the domain of integration

i, j, k:

i, j, k components

Ln:

linear

NLn:

nonlinear

r:

reference

s :

Schmidt

J :

Jaumann rate

\(\dot A\) :

Time derivative of variable A

α, β :

α, βth slip system

e :

elastic

c :

uniform stress

p :

plastic

T:

transpose

References

  1. L. Zheng, B.Q. Li and Mirshams: Int. Symp. on Materials Processing for Computer Ages, 2000, TMS, Warrendale, PA, pp. 39–49.

    Google Scholar 

  2. P. Van Liempt: J. Mater. Processing Technol., 1994, vol. 45, pp. 459–464.

    Article  Google Scholar 

  3. M.C. Abernathy, R.A. Mirsham, A. Raman, B.Q. Li, and A.A. Wereszczak: J. Mater. Sci., 2001, vol. 36, pp. 5697–704.

    Article  CAS  Google Scholar 

  4. L. Anand and M. Kothari: J. Mech. Phys. Solids, 1996, vol. 44, pp. 525–58.

    Article  CAS  Google Scholar 

  5. C. Miehe, J. Schroder, and J. Schotte: Comput. Methods. Appl. Mech. Eng., 1999, vol. 171, pp. 387–418.

    Article  Google Scholar 

  6. K.J. Bathe: Finite Element Procedures, Prentice-Hall, Englewood, NJ, 1997.

    Google Scholar 

  7. T. Belytschko, W. Kam Liu, and B. Moran: Nonlinear Finite Elements for Continua and Structures, Wiley, New York, NY, 2000.

    Google Scholar 

  8. R.M. McMeeking and J.R. Rice: Int. J. Solids Struct., 1975, vol. 11, pp. 601–16.

    Article  Google Scholar 

  9. A.L. Eterovic and K.J. Bathe: Int. J. Num. Methods Eng., 1990, vol. 30, pp. 1099–114.

    Article  Google Scholar 

  10. D.R.J. Owen and E. Hinton: Finite Elements in Plasticity: Theory and Practice, Pineridge, Swansea, 1986.

    Google Scholar 

  11. P.M. Pinsky, M. Ortiz, and K.S. Pister: Comput. Methods Appl. Mech. Eng., 1983, vol. 10, pp. 137–58.

    Article  Google Scholar 

  12. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  13. A. Acharya and A.J. Beaudoin: J. Mech. Phys. Solids, 2000, vol. 48, pp. 2213–230.

    Article  Google Scholar 

  14. R. Asaro and A. Needleman: Acta Metall, 1985, vol. 33 pp. 923–53.

    Article  CAS  Google Scholar 

  15. A. Beaudoin, P. Dawson, K. Mathur, and U. Kocks: Int. J. Plasticity, 1995, vol. 11, pp. 501–21.

    Article  CAS  Google Scholar 

  16. A. Beaudoin, P. Dawson, K. Mathur, U. Kocks, and D. Korzekwa: Comput. Methods Appl. Mech. Eng., 1994, vol. 117, pp. 49–70.

    Article  Google Scholar 

  17. E. Marin and P. Dawson: Comput. Methods Appl. Mech. Eng., 1998, vol. 165, pp. 1–21.

    Article  Google Scholar 

  18. R. Becker, R. Smelser, and S. Panchanadeeswaran: Modelling Simul. Mater. Sci. Eng, 1993, vol. 1, pp. 203–24.

    Article  CAS  Google Scholar 

  19. A. Staroselsky and L. Anand: J. Mech. Phys. Solids, 1998, vol. 46, pp. 671–96.

    Article  CAS  Google Scholar 

  20. R. Becker, J. Butler, H. Hu, and L. Lalli: Metall. Trans. A, 1991, vol. 22A, pp. 45–58.

    CAS  Google Scholar 

  21. A. Maniatty, P. Dawson, and G. Weber: Int. J. Mech. Sci., 1991, vol. 33, pp. 361–77.

    Article  Google Scholar 

  22. H. Weiland and R. Becker: Proc. 20th Ris Int. Symp. on Materials Science: Deformation-Induced Microstructures: Analysis and Relation to Properties, Risφ National Laboratory, Denmark, 1999, J.B. Blide-Sorensen, J.V. Cartensen, N. Hansen, D. Juul Jensen, T. Leffers, W. Panthleon, O.B. Pedersen, and G. Winther, eds., pp. 213–25.

    Google Scholar 

  23. A.M. Cuitino and M. Ortiz: Modeling Simul. Mater. Sci. Eng, 1993, vol. 11, pp. 225–63.

    Article  Google Scholar 

  24. R. Becker: J. Mech. Phys. Solids, 1991, vol. 39, pp. 459–76.

    Article  Google Scholar 

  25. D. Field and B. Adams: Acta Metall Mater. 1992, vol. 40, pp. 1145–57.

    Article  CAS  Google Scholar 

  26. K. Mathur, P. Dawson, and U. Kocks: Mech. Mater., 1990, vol. 10, pp. 183–202.

    Article  Google Scholar 

  27. B. Adams and D. Field: Acta Metall. Mater., 1991, vol. 39, pp. 2405–17.

    Article  CAS  Google Scholar 

  28. C. Miehe and J. Schroder: Int. J. Num. Methods Eng., 2001, vol. 50, pp. 273–98.

    Article  Google Scholar 

  29. R. Knockaert, Y. Chastel, and E. Massoni: Int. J. Plasticity, 2000, vol. 16, pp. 179–98.

    Article  Google Scholar 

  30. A. Molinari, G. Canova, and S.A. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983–94.

    Article  CAS  Google Scholar 

  31. J. Bishop and R. Hill: Phil. Mag., 1951, vol. 42, pp. 414–27.

    CAS  Google Scholar 

  32. D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1982, vol. 30, pp. 1087–119.

    Article  CAS  Google Scholar 

  33. S. Panchanadeeswaran, R. Doherty, and R. Becker: Acta Mater., 1996, vol. 4, pp. 1233–62.

    Article  Google Scholar 

  34. J.L. Bassani: Adv. Appl. Mech., 1994, vol. 30, pp. 191–258.

    Article  Google Scholar 

  35. J.L. Bassani: J. Mech. Phys. Solids, 2001, vol. 49, pp. 1983–96.

    Article  Google Scholar 

  36. R. Prasannavenkatesan: Master’s Thesis, Washington State University, Pullman, WA, 2003.

    Google Scholar 

  37. J.Y. Shu and N.A. Fleck: J. Mech. Phys. Solids, 1999, vol. 47, pp. 297–324.

    Article  Google Scholar 

  38. S.P. Song, X. Cui, and B.Q. Li: ASME Winter Meeting: Radiative Heat Transfer, New Orleans, LA, 2002.

  39. G. Rosen, D. Juul-Jensen, D. Hughes, and N. Hansen: Acta Metall. Mater., 1995, vol. 43, pp. 2563–79.

    Article  CAS  Google Scholar 

  40. R. Prasannavenkatesan, B.Q. Li, D.P. Field, and H. Weiland: TMS Annual Meeting, 2003, pp. 279–88.

  41. J.C. Nagtegaal: Comput. Methods. Appl. Mech. Eng., 1982, vol. 33, pp. 469–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Q. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasannavenkatesan, R., Li, B.Q., Field, D.P. et al. A parallel macro/micro elastoplasticity model for aluminum deformation and comparison with experiments. Metall Mater Trans A 36, 241–256 (2005). https://doi.org/10.1007/s11661-005-0156-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0156-6

Keywords

Navigation