Skip to main content
Log in

Microstructural evolution of the nickel platinum-aluminide bond coat on electron-beam physical-vapor deposition thermal-barrier coatings during high-temperature service

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution of a (Ni,Pt)-aluminide bond coat underneath the ZrO2-based thermal-barrier coating (TBC) topcoat system on a René N5 Ni-based superalloy turbine blade during prolonged high-temperature service has been characterized using transmission electron microscopy (TEM). The as-deposited bond coat has a spatially varying microstructure, which consists of an outer layer of single-phase β-(Ni,Pt)Al, a middle layer of a β-(Ni,Pt)Al matrix containing a high number density of μ-phase precipitates, and an inner layer containing a γ/γ′ matrix and numerous μ- and σ-phase precipitates. During service, microstructural changes in the hotter sections of the blade are more extensive than those in the cooler parts, as expected. As a result of interdiffusion, the inner layer grows into the γ/γ′ substrate, with the formation of some M23C6 precipitates, and the β matrix in the middle layer is transformed into a two-phase mixture of β and γ′. Corresponding changes occur in the morphologies and volume fractions of the various precipitate phases present in the bond coat. The single-phase β material in the outer layer retains its basic structure, except that the compositional changes due to diffusion between the bond coat and turbine blade cause a martensitic transformation to occur in the hottest sections during the final cooling of the blade. The distribution of various elements in the different layers has also been analyzed, as has growth of the thermally grown oxide (TGO) at the bond coat/TBC interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gobel, A. Rahmel, and M. Schutze: Oxid. Met., 1994, vol. 41(3–4), pp. 271–300.

    Article  Google Scholar 

  2. J.H. Sun, H.C. Jang, and E. Chang: Surf. Coating Technol., 1994, vol. 64, pp. 195–203.

    Article  CAS  Google Scholar 

  3. W.T. Wu, A. Rahmel, and M. Schrorr: Oxid. Metall., 1984, vol. 22, pp. 59–81.

    Article  CAS  Google Scholar 

  4. J.G. Fountain, F.A. Golightly, F.H. Scott, and G.C. Wood: Oxid. Metall., 1976, vol. 10, pp. 341–50.

    Article  CAS  Google Scholar 

  5. H.M. Tawancy, N.M. Abbas, and T.N. Rhys-Jones: Surf. Coating Technol., 1991, vol. 49, pp. 1–7.

    Article  CAS  Google Scholar 

  6. Y. Niu, W. Wu, D. Boone, J. Smith, J. Zhang, and C. Chen: J. Phys., 1993, vol. 3, pp. 511–20.

    CAS  Google Scholar 

  7. E. Felten: Oxid. Met., 1976, vol. 10, pp. 23–41.

    Article  CAS  Google Scholar 

  8. E. Felten and F. Pettit: Oxid. Met., 1976, vol. 10, p. 189.

    Article  CAS  Google Scholar 

  9. P. Tomaszewicz and G.R. Wallwork: in Reviews of High Temperature Materials, J. Newkirk, ed., Freund Publishing House, London, 1982, p. 49.

    Google Scholar 

  10. W.F. Gale and J.E. King: Surf. Coating Technol., 1992, vols. 54–55, pp. 8–12.

    Article  Google Scholar 

  11. J. Angenete and K. Stiller: Mater. Sci. Eng., 2001, vol. A316, pp. 182–94.

    CAS  Google Scholar 

  12. J. Angenete: Licentiate Thesis, Chalmers University of Technology and Goeteborg University, Göteborg, Sweden, 1999.

    Google Scholar 

  13. J.H. Chen and J.A. Little: Surf. Coating Technol., 1997, vol. 92, pp. 69–77.

    Article  CAS  Google Scholar 

  14. E. Basuki, A. Crosky, and B. Gleeson: Mater. Sci. Eng. A, 1997, vol. 224, pp. 27–32.

    Article  Google Scholar 

  15. J.W. Holmes and F.A. McClintock: Metall. Trans. A, 1990, vol. 21, pp. 1209–22.

    Google Scholar 

  16. P. Moretto and J. Bressers: J. Mater. Sci., 1996, vol. 31, pp. 4817–29.

    Article  CAS  Google Scholar 

  17. H.M. Tawancy, N. Sridhar, N.M. Abbas, and D. Rickerby: Scripta Mater., 1995, vol. 33, pp. 1431–38.

    Article  CAS  Google Scholar 

  18. W.F. Gale and J.E. King: J. Mater. Sci., 1993, vol. 28, pp. 4347–54.

    Article  CAS  Google Scholar 

  19. W.F. Gale and J.E. King: Metall. Trans. A, 1992, vol. 23A, pp. 2657–65.

    CAS  Google Scholar 

  20. M.W. Chen, R.T. Ott, T.C. Hufnagel, P.K. Wright, and K.J. Hemker: Surf. Coating Technol., 2003, vols. 163–164, pp. 25–30.

    Article  Google Scholar 

  21. M.W. Chen, K.J.T. Livi, P.K. Wright, and K.J. Hemker: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2289–99.

    Google Scholar 

  22. D. Pan, M.W. Chen, P.K. Wright, and K.J. Hemker: Acta Mater., 2003, vol. 51, p. 2205.

    Article  CAS  Google Scholar 

  23. M.W. Chen, M.L. Glynn, R.T. Ott, T.C. Hufnagel, and K.J. Hemker: Acta Mater., 2003, vol. 51, pp. 4279–94.

    Article  CAS  Google Scholar 

  24. D.P. Garriga-Majo, B.A. Shollock, D.S. McPhail, R.J. Chater, and J.F. Walker: Int. J. Inorg. Mater., 1999, vol. 1, pp. 325–36.

    Article  CAS  Google Scholar 

  25. O. Unal, A.H. Heuer, and T.E. Mitchell: J. Electron Microsc. Technique, 1990, vol. 14, pp. 307–14.

    Article  CAS  Google Scholar 

  26. V.K. Tolpygo and D.R. Clarke: Acta Mater., 2000, vol. 48, pp. 3283–93.

    Article  CAS  Google Scholar 

  27. M.J. Steiger, N.M. Yanar, F.S. Pettit, and G.H. Meier: Elevated Temperature Coatings: Science and Technology III, 1999, p. 51.

  28. K.S. Murphy, K.L. More, and M.J. Lance: Surf. Coating Technol., 2001, vols. 146–147, pp. 152–61.

    Article  Google Scholar 

  29. U. Schulz, M. Menzebach, C. Leyens, and Y.Q. Yang: Surf. Coating Technol., 2001, vols. 146–147, pp. 117–23.

    Article  Google Scholar 

  30. C.G. Levi, E. Sommer, S.G. Terry, A. Catanoiu, and M. Rühle: J. Am. Ceram. Soc., 2003, vol. 86 (4), pp. 676–85.

    Article  CAS  Google Scholar 

  31. O. Unal, T.E. Mitchell, and A.H. Heuer: J. Am. Ceram. Soc., 1994, vol. 77 (4), pp. 984–92.

    Article  CAS  Google Scholar 

  32. U. Schulz and M. Schücker: Mater. Sci. Eng., 2000, vol. A276, pp. 1–8.

    CAS  Google Scholar 

  33. J.C. Schaeffer: Proc. NASA TBC Workshop, May 19–21, 1997, NASA, Cleveland, OH, 1997, p. 99.

    Google Scholar 

  34. S. Shankar: Ph.D. Thesis, State University of New York, 1977.

  35. J. Angenete and K. Stiller: Mater. Sci. Eng., 2001, vol. A316, pp. 182–94.

    CAS  Google Scholar 

  36. Y. Zhang, J.A. Haynes, B.A. Pint, I.G. Wright, and W.Y. Lee: Surf. Coating Technol., 2003, vols. 163–164, pp. 19–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L.C., Heuer, A.H. Microstructural evolution of the nickel platinum-aluminide bond coat on electron-beam physical-vapor deposition thermal-barrier coatings during high-temperature service. Metall Mater Trans A 36, 43–53 (2005). https://doi.org/10.1007/s11661-005-0137-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0137-9

Keywords

Navigation