Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 7, pp 1757–1767 | Cite as

Determination of the isothermal sections of the Al-Ni-Si ternary system at 750 °C and 850 °C

  • X. M. Pan
  • Z. P. Jin
  • J. -C. Zhao
Article

Abstract

The phase equilibria of the Al-Ni-Si ternary system at 850 °C and 750 °C have been investigated using scanning electron microscopy (SEM) and electron-probe microanalysis (EPMA). Isothermal sections at 850 °C and 750 °C were constructed based on experimental data from 53 alloys heat treated at 850 °C for 1200 hours and at 750 °C for 1440 hours, respectively. The phase equilibria among the following intermetallics and solid-solution phases are described: Ll2-Ni3(Al,Si), B2-NiAl, Ni5Si2, δ-Ni2Si, ϑ-Ni2Si(τ 4), Ni3Si2, NiSi, NiSi2, Ni2Al3, NiAl3, Ni2AlSi(τ 2), Ni3Al6Si(τ 3), Ni16AlSi9(τ 5), the fcc solid solution, and the diamond (Si) phase. In addition, a phase, temporarily designated as Ni5(Al,Si)3(τ 6), was observed for the first time at both 750 °C and 850 °C. This phase is probably the stabilization of Ni5Al3 by Si to higher temperatures than the binary Ni5Al3, which is only stable at <∼700 °C.

Keywords

Material Transaction Isothermal Section Gray Phase Alloy Heat Equilibrium Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bonnet, J. Ronez, and R. Castanet: Thermochimica Acta, 1989, vol. 155, pp. 39–56.CrossRefGoogle Scholar
  2. 2.
    B. Otani and K.N. Kenkyu: Study Met., 1930, vol. 7, pp. 666–86.Google Scholar
  3. 3.
    H.W.L. Phillips: J. Inst. Met., London, 1942, vol. 68, pp. 27–46.Google Scholar
  4. 4.
    R.W. Guard and E.A. Smith: J. Inst. Met., 1959, vol. 88, pp. 369–70.Google Scholar
  5. 5.
    N.V. Herman: Ser. Khimichno, Visnik L’Vivs’Kogo Derzhavnogo Univ., 1981, vol. 23, pp. 61–64.Google Scholar
  6. 6.
    O.S. Zarechyuk, N.V. Herman, T.I. Yanson, R.M. Rykhal, and A.A. Muraveva: Fazovye. Ravnov. Met. Splavakh. Izd. Nauka, Moscow, 1981, pp. 69–73 (in Russian).Google Scholar
  7. 7.
    S. Ochiai, Y. Oya, and T. Suzuki: Bull. PME (TIT), 1983, vol. 52, pp. 1–16.Google Scholar
  8. 8.
    A. Mitsuhashi, Y. Mitshima, and T. Suzuki: Bull. PME (TIT), 1984, vol. 54, pp. 7–15.Google Scholar
  9. 9.
    G. Muralidharan, J.W. Richardson, Jr., J.E. Epperson, and H. Chen: Scripta Mater., 1997, vol. 36, pp. 543–49.CrossRefGoogle Scholar
  10. 10.
    K.W. Richter: J. Alloys Compounds, 2002, vol. 338, pp. 43–50.CrossRefGoogle Scholar
  11. 11.
    K.W. Richter and H. Ipser: Intermetallics, 2003, vol. 11, pp. 101–09.CrossRefGoogle Scholar
  12. 12.
    M. Jain and S.P. Gupta: Mater. Characterization, 2003, vol. 51, pp. 243–57.CrossRefGoogle Scholar
  13. 13.
    K.W. Richter, K. Chandrasekaran, and H. Ipser: Intermetallics, 2004, vol. 12, pp. 545–54.CrossRefGoogle Scholar
  14. 14.
    F. Bosselet, J.C. Viala, C. Colin, B.F. Mentzen, and J. Bouis: Mater. Sci. Eng., 1993, vol. A167, pp. 147–54.Google Scholar
  15. 15.
    P. Villars and L.D. Calvert: Pearsons Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1991, vols. 1–4, pp. 948–4734.Google Scholar
  16. 16.
    K.W. Richter, Y. Prots, and Y. Grin: Z. Anorg. Allg. Chem., 2004, vol. 630, pp. 417–22.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • X. M. Pan
    • 1
  • Z. P. Jin
    • 2
  • J. -C. Zhao
    • 3
  1. 1.Ohio State UniversityColumbus
  2. 2.the School of Materials Science and EngineeringCentral South UniversityChangshaP.R. China
  3. 3.General Electric CompanyGE Global ResearchNiskayuna

Personalised recommendations