Metallurgical and Materials Transactions A

, Volume 36, Issue 7, pp 1729–1736 | Cite as

Mechanisms of creep deformation in Mg-Sc-based alloys

  • B. L. Mordike
  • I. Stulíková
  • B. Smola


Binary Mg-Sc alloys show only a very weak age-hardening response due to the low diffusivity of Sc in Mg and exhibit inferior creep resistance compared to WE alloys. The addition of a small amount of Mn (<1.5 wt pct) improves their creep behavior markedly, decreasing the minimum creep rates by up to about two orders of magnitude at temperatures above 300 °C compared to WE alloys. This is due to the precipitation of fine Mn2Sc phase basal discs, which are very effective obstacles in controlling creep at temperatures at which cross-slip of basal dislocations and nonbasal slip are the rate controlling mechanisms. The addition of Ce improves the creep resistance even more due to the effect of the grain boundary eutectic. The effect of Mn2Sc discs can still be seen in alloys with a low Sc content (∼1 wt pct) and with the addition of rare earth (RE) elements (Gd, Y, Ce ∼4 wt pct). Very thin hexagonal plates containing RE and Mn, which lie parallel to the basal plane of the Mg matrix, augment the effect of the Mn2Sc precipitates at elevated temperatures (∼250 °C). The triangular arrangement of prismatic plates of metastable or stable phases of Mg-RE systems controls effectively the motion of basal dislocations during the creep of these alloys at elevated or high temperatures. The combined control of basal slip, cross-slip of basal dislocations, and of nonbasal slip in low Sc content alloys ensures minimum creep rates of about one order of magnitude lower than those observed in WE alloys, both at elevated and high temperatures.


Material Transaction Minimum Creep Rate Isochronal Annealing Basal Disc Basal Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.W. Lorimer: Proc. London Conf. on Magnesium Technology, H. Baker, ed., Institute of Metals, London, 1986, pp. 47–53.Google Scholar
  2. 2.
    I.J. Polmear: Mater. Sci. Technol., 1994, vol. 10, pp. 1–16.Google Scholar
  3. 3.
    T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM, Materials Park, OH, 1990, vol. 4, pp. 2545–6.Google Scholar
  4. 4.
    P. Vostrý, I. Stulíková, B. Smola, F. von Buch, and B.L. Mordike: in Magnesium Alloys and Their Applications, B.L. Mordike and K.U. Kainer, eds., Werkstoff-Informationsgeselschaft, Frankfurt, 1998, pp. 333–38.Google Scholar
  5. 5.
    B.L. Mordike and F. von Buch: Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH Verlag, Weinheim, 2000, pp. 35–40.CrossRefGoogle Scholar
  6. 6.
    B.L. Mordike: Mater. Sci. Eng. A, 2002, vol. 324, pp. 103–12.CrossRefGoogle Scholar
  7. 7.
    B.L. Mordike and I. Stulíková: Proc. Int. Conf. Metallic Light Alloys, Institution of Metallurgists, London, 1983, pp. 146–53.Google Scholar
  8. 8.
    W. Henning and B.L. Mordike: Proc. ICSMA 7, Montreal, 1985, pp. 803–08.Google Scholar
  9. 9.
    F. von Buch: Ph.D. Thesis, TU-Clausthal, Clausthal-Zellerfeld, 1999.Google Scholar
  10. 10.
    F. von Buch, J. Lietzau, B.L. Mordike, A. Pisch, and R. Schmid-Fetzer: Mater. Sci. Eng. A, 1999, vol. 263, pp. 1–7.CrossRefGoogle Scholar
  11. 11.
    B. Smola, I. Stulíková, J. Pelcová, F. von Buch, and B.L. Mordike: Phys. Status. Solidi. (A), 2002, vol. 191, pp. 305–16.CrossRefGoogle Scholar
  12. 12.
    I. Stulíková, B. Smola, J. Pelcová, F. von Buch, and B.L. Mordike: Magnesium 2000, A. Aghion and E. Eliezer, eds., MRI, Beer Sheva, 2000, pp. 218–25.Google Scholar
  13. 13.
    Magnesium Elektron Ltd., Manchester, United Kingdom, 1993.Google Scholar
  14. 14.
    I. Stulíková, B. Smola, F. von Buch, and B.L. Mordike: Mat.-Wiss. Werkstofftech., 2001, vol. 32, pp. 20–24.CrossRefGoogle Scholar
  15. 15.
    B. Smola, I. Stulíková, J. Pelcová, F. von Buch, and B.L. Mordike: Z. Metallkd., 2003, vol. 94, pp. 553–58.Google Scholar
  16. 16.
    J.F. Nie: Scripta Mater., 2003, vol. 48, pp. 1009–15.CrossRefGoogle Scholar
  17. 17.
    B. Smola, I. Stulíková, F. von Buch, and B.L. Mordike: Mater. Sci. Eng. A, 2002, vol. 324, pp. 113–17.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • B. L. Mordike
    • 1
  • I. Stulíková
    • 2
    • 3
  • B. Smola
    • 3
    • 2
  1. 1.the Institute of Materials Engineering and Technology, TU ClausthalClausthalGermany
  2. 2.the Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  3. 3.Zentrum für Funletions werestoffeClausthal-ZellerfeldGermany

Personalised recommendations