Metallurgical and Materials Transactions A

, Volume 36, Issue 7, pp 1721–1728 | Cite as

Creep deformation mechanisms in high-pressure die-cast magnesium-aluminum-base alloys

  • W. Blum
  • Y. J. Li
  • X. H. Zeng
  • P. Zhang
  • B. von Großmann
  • C. Haberling


Creep of die-cast Mg alloys is described as an integral part of their plastic deformation behavior in terms of stress-strain-rate-strain relations. Creep tests yield information on yield stress, work hardening, maximum deformation resistance (minimum creep rate), and work softening. Testing in compression avoids influences by fracture. Data on the alloy AJ52 (5Al, 2Sr) in the temperature range between 135 °C and 190 °C are presented and compared to those for AZ91 and AS21. Die-cast Mg-Al alloys consist of fine grains with a grain boundary region containing intermetallic precipitates. Transmission electron microscopic observations indicate that basal glide is the dominant mechanism of deformation being supplemented by nonbasal glide and twinning to maintain compatiblity between the grains. The deformation resistance can be modeled with a composite approach assuming that the grain boundary region is relatively hard due to precipitation of intermetallic phases. The differences in long-term creep resistance at low stress are explained in terms of different strength and stability of precipitates in the different alloys.


Material Transaction Creep Rate Boundary Region Precipitation Hardening Inelastic Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Blum, B. Watzinger, and P. Weidinger: in Magnesium Alloys and Their Applications, B.L. Mordike and K.U. Kainer, eds., MATINFO Werkstoff-Informationsgesellschaft, Frankfurt, 1998, pp. 49–60.Google Scholar
  2. 2.
    W. Blum, Y. Li, X.H. Zeng, B. von Großmann, C. Haberling, and H.-G. Haldenwanger: in Int. Conf. on Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, Weinheim, 2004, pp. 62–67.Google Scholar
  3. 3.
    D.A. Woodford: Mater. Sci. Eng., 1969, vol. 4, pp. 146–54.CrossRefGoogle Scholar
  4. 4.
    Technical Report, Noranda, Canada, 2003, http://www.noranda.comGoogle Scholar
  5. 5.
    P. Zhang: Dr.-Ing. Dissertation, Universitat Erlangen-Nurnberg, Erlangen, 2001.Google Scholar
  6. 6.
    P. Zhang, B. Watzinger, and W. Blum: Phys. Status Solidi (a), 1999, vol. 175, pp. 481–89.CrossRefGoogle Scholar
  7. 7.
    P. Zhang, B. Watzinger, Q.P. Kong, and W. Blum: Key Eng. Mater., 2000, vol. 171–174, pp. 609–16.Google Scholar
  8. 8.
    W. Blum, B. Watzinger, and P. Zhang: Adv. Eng. Mater., 2000, vol. 2, pp. 349–55.CrossRefGoogle Scholar
  9. 9.
    W. Blum, P. Weidinger, B. Watzinger, R. Sedláček, R. Rösch, and H.-G. Haldenwanger: Z. Metallkd., 1997, vol. 88, pp. 636–41.Google Scholar
  10. 10.
    H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps—The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, United Kingdom, 1982, p. 44.Google Scholar
  11. 11.
    A. Luo: in 3rd Int. Magnesium Conf., G.W. Lorimer, ed., Institute of Materials, London, 1997, pp. 449–64.Google Scholar
  12. 12.
    S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48, pp. 1003–08.CrossRefGoogle Scholar
  13. 13.
    G.V. Raynor: The Physical Metallurgy of Mg and Its Alloys, Pergamon Press, Oxford, United Kingdom, 1959.Google Scholar
  14. 14.
    H. Sato, Y. Masada, and H. Oikawa: Proc. 7th JIM Int. Symp. on Aspects of High Temperature Deformation and Fracture in Crystalline Materials, Y. Hosoi, H. Yoshinaga, H. Oikawa, and K. Maruyama, eds., The Japan Institute of Metals, Sendai, 1993, pp. 107–14.Google Scholar
  15. 15.
    H. Sato, M. Suzuki, K. Maruyama, and H. Oikawa: Key Eng. Mater., 2000, vols. 171–174, pp. 601–09.CrossRefGoogle Scholar
  16. 16.
    W. Blum: in Plastic Deformation and Fracture of Materials, vol. 6, Materials Science and Technology, H. Mughrobi, ed., R.W. Cahn, P. Haasen, and E.J. Kramer, eds., VCH Verlagsgesellschaft, Weinheim, 1993, pp. 359–405.Google Scholar
  17. 17.
    G.L. Dunlop, W.P. Sequeira and M.S. Dargusch: Proc. 1st Isreali Int. Conf. on Magnesium Science and Technology, Magnesium Research Institute (MRI) Ltd., Beer-Sheva, Israel, 1997, pp. 108–15.Google Scholar
  18. 18.
    M. Regev, E. Aghion, A. Rosen, and M Bamberger: Mater. Sci. Eng. A, 1998, vol. 252, pp. 6–16.CrossRefGoogle Scholar
  19. 19.
    W. Blum, F. Breutinger, B. Watzinger, J. Kroc, P. Weidinger, and R. Rösch: in Proc. 1st Israeli Int. Conf. on Magnesium Science & Technology, E. Aghion and D. Eliezer, eds., Magnesium Research Institute (MRI) Ltd., Israel, 1998, pp. 151–56.Google Scholar
  20. 20.
    B.J. Watzinger: Dr.-Ing. Dissertation, University of Erlangen-Nurnberg, Erlangen, 2000.Google Scholar
  21. 21.
    H. Mughrabi: Acta Metall., 1983, vol. 31 (9), pp. 1367–79.CrossRefGoogle Scholar
  22. 22.
    S. Vogler and W. Blum: in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., Institute of Metals, London, 1990, pp. 65–79.Google Scholar
  23. 23.
    R. Sedláček and W. Blum: Comp. Mater. Sci., 2002, vol. 25 (1–2), pp. 200–06.CrossRefGoogle Scholar
  24. 24.
    M. Vogel, O. Kraft, and E. Arzt: Scripta Mater., 2003, vol. 48, pp. 985–90.CrossRefGoogle Scholar
  25. 25.
    I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, and T.M. Pollock: Scripta Mater., 2003, vol. 48, pp. 1029–34.CrossRefGoogle Scholar
  26. 26.
    J.F. Nie and B.C. Muddle: Acta Mater., 2000, vol. 48, pp. 1691–1703.CrossRefGoogle Scholar
  27. 27.
    Hydro Magnesium Porsgrunn, Analysezertifikat, 1995.Google Scholar
  28. 28.
    J.L. Murray: in Binary Alloy Phase Diagrams, T.B. Massalski, ed., ASM INTERNATIONAL, Metals Park, OH, 1986, vol. 1, p. 129.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • W. Blum
    • 1
  • Y. J. Li
    • 1
  • X. H. Zeng
    • 1
  • P. Zhang
    • 3
    • 2
  • B. von Großmann
    • 5
    • 4
  • C. Haberling
    • 4
  1. 1.the Inst. f. Werkstoffwissenschaften. LS1ErlangenGermany
  2. 2.the Inst. f. Werkstoffwiss. LS1Germany
  3. 3.BTU Cottbus.Germany
  4. 4.Audi AGIngolstadtGermany
  5. 5.Georg-Simon-OhmNürnbergGermany

Personalised recommendations