Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 7, pp 1697–1704 | Cite as

Microstructural features of rolled Mg-3Al-1Zn

  • M. R. Barnett
  • Z. Keshavarz
  • M. D. Nave
Article

Abstract

The microstructures of hot- and cold-rolled Mg-3Al-1Zn (AZ31) are examined using scanning electron and optical microscopy. It is shown that the microstructures following multipass hot rolling and annealing are more uniform than those formed by heavy single pass rolling and annealing. The importance of twins in producing intragranular recrystallization is evident, although the most dominant nucleation site is grain boundaries. The cold-rolled structure after a rolling reduction of 15 pct is dominated by the presence of deformation twins. Twin trace analysis suggests that approximately two thirds of the twins are a form of “c-axis compression” twin. A number of “c-axis tension” twins were also observed and additional in-situ scanning electron microscopy experiments were performed to confirm earlier observations that suggest these twins can form after deformation, during unloading.

Keywords

Material Transaction Magnesium Alloy Cold Rolling Rolling Temperature Rolling Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Menzen: in The Technology of Magnesium and Its Alloys, A. Beck, ed., F.A. Hughes and Co. Ltd., London, 1940, p. 393.Google Scholar
  2. 2.
    S.L. Couling, J.F. Pashak, and L. Sturkey: Trans. ASM, 1959, vol. 51, pp. 94–107.Google Scholar
  3. 3.
    C.S. Roberts: Magnesium and Its Alloys, John Wiley, New York, NY, 1960, pp. 81–107.Google Scholar
  4. 4.
    M.T. Perez-Prado, J.A. del Valle, and O.A. Ruano: Scripta Mater., 2004, vol. 50, pp. 667–71.CrossRefGoogle Scholar
  5. 5.
    F. Kaiser, J. Bohlen, D. Letzug, K.U. Kainer, A. Styczynski, and C. Hartig: Proc. 6th Int. Conf. Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, Weinheim, 2004, pp. 456–62.Google Scholar
  6. 6.
    M.R. Barnett, M.D. Nave, and C.J. Bettles: Mater. Sci. Eng. A, 2004, vol. 386, pp. 205–11.CrossRefGoogle Scholar
  7. 7.
    N. Ono, K. Nakamura, and S. Miura: Mater. Sci. Forum, 2003, vols. 419–422, pp. 195–200.Google Scholar
  8. 8.
    R. Kawalla, N. Coung, and A. Stolnikov: Proc. 6th Int. Conf. on Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, Weinheim, 2004, pp. 803–10.Google Scholar
  9. 9.
    R.K. Nadella, I. Samajdar, and G. Gottstein: Proc. 6th Int. Conf. on Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, Weinheim, 2004, pp. 1052–57.Google Scholar
  10. 10.
    Y.-H. Chen, S. Lee, and J.-Y. Wang: Mater. Sci. Forum, 2003, vols. 419–422, pp. 383–86.Google Scholar
  11. 11.
    G. Itoh, Y. Iseno, and Y. Motohashi: Mater. Sci. Forum, 2003, vols. 419–422, pp. 355–58.CrossRefGoogle Scholar
  12. 12.
    J.A. Del Valle, M.T. Perez-Prado, and O.A. Ruano: Mater. Sci. Eng. A, 2003, vol. 355, pp. 68–78.CrossRefGoogle Scholar
  13. 13.
    A. Galiyev, R. Kaibyshev, and D. Voronin: Proc. 6th Int. Conf. Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, Weinheim, 2004, pp. 266–71.Google Scholar
  14. 14.
    B.C. Wonsiewicz and W.A. BackoFen: Trans. AIME, 1967, vol. 239, pp. 1423–31.Google Scholar
  15. 15.
    W.H. Hartt and R.E. Reed-Hill: Trans. AIME, 1967, vol. 239, pp. 1511–17.Google Scholar
  16. 16.
    M.D. Nave and M.R. Barnett: Scripta Mater., 2004, vol. 51, pp. 881–85.CrossRefGoogle Scholar
  17. 17.
    M.H. Yoo and J.K. Lee: Phil. Mag. A, 1991, vol. 63, pp. 987–1000.Google Scholar
  18. 18.
    G.E. Dieter: in Mechanical Metallurgy, McGraw-Hill, Singapore, 1988, p. 611.Google Scholar
  19. 19.
    K. Pettersen and N. Ryum: Metall. Trans. A, 1989, vol. 20A, pp. 847–52.Google Scholar
  20. 20.
    HKL “CHANNEL 5” Software Manual, HKL Technology, Denmark, 2003.Google Scholar
  21. 21.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, United Kingdom, 1996, pp. 173–200.Google Scholar
  22. 22.
    R.O. Kaibyshev and O.S. Sitdikov: Phys. Met. Metallogr., 2000, vol. 89, pp. 384–90.Google Scholar
  23. 23.
    M.M. Myshlyaev, H.J. McQueen, A. Mwembela, and E. Konopleva: Mater. Sci. Eng. A, 2002, vol. 337, pp. 121–33.CrossRefGoogle Scholar
  24. 24.
    R.L. Woolley: J. Inst. Met., 1954, vol. 83, pp. 57–58.Google Scholar
  25. 25.
    M.A. Gharghouri, G.C. Weatherly, J.D. Embury, and J. Root: Phil. Mag., 1999, vol. 79, pp. 1671–95.CrossRefGoogle Scholar
  26. 26.
    F.E. Hauser, C.D. Starr, L. Tietz, and J.E. Dorn: Trans. ASM, 1955, vol. 47, pp. 102–33.Google Scholar
  27. 27.
    T.A. Mason, J.F. Bingert, G.C. Kaschner, S.I. Wright, and R.J. Larsen: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 949–54.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • M. R. Barnett
    • 1
  • Z. Keshavarz
    • 1
  • M. D. Nave
    • 1
  1. 1.the School of EngineeringDeakin UniversityGeetongAustralia

Personalised recommendations