Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 7, pp 1669–1679 | Cite as

Grain refinement of magnesium alloys

  • David H. StJohn
  • Ma Qian
  • Mark A. Easton
  • Peng Cao
  • Zoë Hildebrand
Article

Abstract

The literature on grain refinement of magnesium alloys is reviewed with regard to two broad groups of alloys: alloys that contain aluminum and alloys that do not contain aluminum. The alloys that are free of aluminum are generally very well refined by Zr master alloys. On the other hand, the understanding of grain refinement in aluminum bearing alloys is poor and in many cases confusing probably due to the interaction between impurity elements and aluminum in affecting the potency of nucleant particles. A grain refinement model that was developed for aluminum alloys is presented, which takes into account both alloy chemistry and nucleant particle potency. This model is applied to experimental data for a range of magnesium alloys. It is shown that by using this analytical approach, new information on the refinement of magnesium alloys is obtained as well as providing a method of characterizing the effectiveness of new refiners. The new information revealed by the model has identified new directions for further research. Future research needs to focus on gaining a better understanding of the detailed mechanisms by which refinement occurs and gathering data to improve our ability to predict grain refinement for particular combinations of alloy and impurity chemistry and nucleant particles.

Keywords

Material Transaction Magnesium Alloy Nucleant Particle Magnesium Technology Thermal Undercooling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Bettles, C.T. Forwood, D.H. StJohn, M.T. Frost, D.S. Jones, M. Qian, G.L. Song, J.R. Griffiths, and J.F. Nie: Magnesium Technology 2003, San Diego, CA, 2003, H.I. Kaplan, ed., TMS, Warrendale, PA, 2003, pp. 223–26.Google Scholar
  2. 2.
    G.L. Song and A. Atrens: Adv. Eng. Mater., 2003, vol. 5, pp. 837–58.CrossRefGoogle Scholar
  3. 3.
    V. Kondic: Metallurgical Principles of Founding, Edward Arnold, London, 1968, pp. 100–03.Google Scholar
  4. 4.
    I.G. Farbenindustrie: British Patent GB359,425, 1931.Google Scholar
  5. 5.
    E.F. Emley: Principles of Magnesium Technology, Pergamon Press, Oxford, United Kingdom, 1966, pp. 206–23.Google Scholar
  6. 6.
    C.E. Nelson: Trans. AFS, 1948, vol. 56, pp. 1–23.Google Scholar
  7. 7.
    N. Tiner: AIME Tech. Pub., 1945, vol. 12 (7), pp. 1–19.Google Scholar
  8. 8.
    Y. Tamura, T. Haitani, E. Yano, T. Motegi, N. Kono, and E. Sato: Mater. Mater. Trans. A, 2002, vol. 33A, pp. 2784–88.CrossRefGoogle Scholar
  9. 9.
    P. Cao, M. Qian, and D.H. StJohn: Scripta Mater., 2004, vol. 51, pp. 125–29.CrossRefGoogle Scholar
  10. 10.
    J.Y. Byun, S. Kwon, H.P. Ha, and J.K. Yoon: Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, New York, NY, 2003, pp. 713–18.Google Scholar
  11. 11.
    K. Achenbach, H.A. Nipper, and E. Piwowarsky: Die Giesserei, 1939, vol. 26, pp. 597–604 and 621–623.Google Scholar
  12. 12.
    C.H. Mahoney, A.L. Tarr, and P.E. LeGrand: Trans. AIME, 1945, vol. 161, pp. 328–50.Google Scholar
  13. 13.
    J.A. Davis, L.W. Eastwood, and J. DeHaven: Trans. AFS, 1945, vol. 53, pp. 352–62.Google Scholar
  14. 14.
    M. Qian and P. Cao: Scripta Mater., 2005, vol. 52, pp. 415–19.CrossRefGoogle Scholar
  15. 15.
    Y. Liu, X. Liu, and B. Xiufang: Mater. Lett., 2004, vol. 58, pp. 1282–87.CrossRefGoogle Scholar
  16. 16.
    E. Yano, Y. Tamura, T. Motegi, and E. Sato: J. Jpn. Inst. Light Met., 2001, vol. 51 (11), pp. 594–98.CrossRefGoogle Scholar
  17. 17.
    I.G. Farbenindustrie: Belgian Patent 444,757, 1942.Google Scholar
  18. 18.
    T. Motegi, E. Yano, Y. Tamura, and E. Sato: Mater. Sci. Forum, 2000, vols. 350–351, pp. 191–98.Google Scholar
  19. 19.
    S. Boily and M. Blouin: Canadian Patent 2,327,950, 2002.Google Scholar
  20. 20.
    N. Nishino, H. Kawahara, Y. Shimizu, and H. Iwahori: in Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, New York, NY, 2000, pp. 59–64.CrossRefGoogle Scholar
  21. 21.
    Y.C. Lee, A.K. Dahle, and D.H. StJohn: Metall. Mater. Trans. A, 2000. vol. 31A, pp. 2895–2905.Google Scholar
  22. 22.
    E.F. Emley: Principles of Magnesium Technology, Pergamon Press, Oxford, United Kingdom, 1966, pp. 126–56.Google Scholar
  23. 23.
    H. Okamoto: J. Phase Equilibria, 2002, vol. 23 (2), pp. 198–99.CrossRefGoogle Scholar
  24. 24.
    M. Qian, D.H. StJohn, and M.T. Frost: in Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, Wolfsburg, 2003, pp. 706–12.Google Scholar
  25. 25.
    S. Housh, B. Mikucki, and A. Stevenson: Metals Handbook, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 455–79.Google Scholar
  26. 26.
    B.R. Powell, L.J. Ouiment, J.E. Allison, J.A. Hines, R.S. Beals, L. Kopka, and P.P. Ried: Magnesium Technology 2004, Charlotte, NC, 2004, A.A. Luo, ed., TMS, Warrendale, PA, 2004, pp. 1–9.Google Scholar
  27. 27.
    M. Qian, D.H. StJohn, and M.T. Frost: Scripta Mater., 2002, vol. 46, pp. 649–54.CrossRefGoogle Scholar
  28. 28.
    D.H. StJohn, A.K. Dahle, T. Abbott, M.D. Nave, and M. Qian: Magnesium Technology 2003, San Diego, CA, 2003, H.I. Kaplan, ed., TMS, Warrendale, PA, 2003, pp. 95–100.Google Scholar
  29. 29.
    P. Cao, M. Qian, D.H. StJohn, and M.T. Frost: Mater. Sci. Technol., 2004, vol. 20, pp. 585–92.CrossRefGoogle Scholar
  30. 30.
    F. Sauerwald: Z. Metallkd., 1949, vol. 40, pp. 41–46.Google Scholar
  31. 31.
    Y. Tamura, N. Kono, T. Motegi, and E. Sato: J. Jpn. Inst. Light Met., 1998, vol. 48, pp. 185–89.CrossRefGoogle Scholar
  32. 32.
    M. Qian, D.H. StJohn, and M.T. Frost: in Magnesium Technology 2003, San Diego, CA, 2003, H.I. Kaplan, ed., TMS, Warrendale, PA, 2003, pp. 215–20.Google Scholar
  33. 33.
    M. Qian, D.H. StJohn, and M.T. Frost: Mater. Sci. Forum, 2003, vols. 419–422, pp. 593–98.CrossRefGoogle Scholar
  34. 34.
    M. Qian, D.H. StJohn, and M.T. Frost: in Magnesium Technology 2003, San Diego, CA, 2003, H.I. Kaplan, ed., TMS, Warrendale, PA, 2003, pp. 209–14.Google Scholar
  35. 35.
    M. Qian, L. Zheng, D. Graham, M.T. Frost, and D.H. StJohn: J. Light Met., 2001, vol. 1, pp. 157–65.CrossRefGoogle Scholar
  36. 36.
    Z. Hildebrand, M. Qian, D.H. StJohn, and M.T. Frost: in Magnesium Technology 2004, A.A. Luo, ed., TMS, Warrendale, PA, 2004, pp. 241–45.Google Scholar
  37. 37.
    M. Qian, D.H. StJohn, and M.T. Frost: Scripta Mater., 2004, vol. 50, pp. 1115–19.CrossRefGoogle Scholar
  38. 38.
    A. Cibula: J. Inst. Met., 1949, vol. 76, pp. 321–60.Google Scholar
  39. 39.
    F.A. Crossley and L.F. Mondolfo: J. Met., 1951, vol. 191, pp. 1143–51.Google Scholar
  40. 40.
    I. Maxwell and A. Hellawell: Acta Mater., 1975, vol. 12, pp. 229–37.Google Scholar
  41. 41.
    M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1613–23.Google Scholar
  42. 42.
    D.G. McCartney: Int. Mater. Rev., 1989, vol. 34 (5), pp. 247–60.Google Scholar
  43. 43.
    M. Johnsson: Z. Metallkd., 1994, vol. 85, pp. 781–85.Google Scholar
  44. 44.
    A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48 (11), pp. 2823–35.CrossRefGoogle Scholar
  45. 45.
    M.A. Easton and D.H. StJohn: Acta Mater., 2001, vol. 49, pp. 1867–78.CrossRefGoogle Scholar
  46. 46.
    P. Desnian, Y. Fautrelle, J.-L. Meyer, J.P. Riquet, and F. Durand: Acta Metall. Mater., 1990, vol. 41, pp. 1513–23.Google Scholar
  47. 47.
    M.A. Easton and D.H. StJohn: Alum. Trans., 1999, vol. 1, pp. 51–58.Google Scholar
  48. 48.
    M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, in press.Google Scholar
  49. 49.
    A. Luo: Can. Metall. Q., 1996, vol. 35, pp. 375–83.CrossRefGoogle Scholar
  50. 50.
    M. Qian, D. Graham, L. Zheng, D.H. StJohn, and M.T. Frost: Mater. Sci. Technol., 2003, vol. 19, pp. 156–62.CrossRefGoogle Scholar
  51. 51.
    M.A. Easton and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1625–33.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • David H. StJohn
    • 1
  • Ma Qian
    • 2
  • Mark A. Easton
    • 3
  • Peng Cao
    • 4
  • Zoë Hildebrand
    • 4
  1. 1.the University of QueenslandBrisbaneAustralia
  2. 2.the Brunel Centre for Advanced Solidification Technology, School of Engineering and DesignBrunel UniversityWest LondonUnited Kingdom
  3. 3.the School of Physics and Materials EngineeringMonash UniversityClaytonAustralia
  4. 4.Materials Engineering, School of EngineeringThe University of QueenslandBrisbane

Personalised recommendations