Advertisement

Metallurgical and Materials Transactions A

, Volume 36, Issue 7, pp 1653–1660 | Cite as

Stress and strain localization three-dimensional modeling for particle-reinforced metal matrix composites

  • H. Shen
  • C. J. Lissenden
Article

Abstract

The ductility of particle-reinforced metal matrix composites (PR MMCs) is reduced by the localization of stress and strain, which is exacerbated by microstructural heterogeneity, especially particle clustering. Herein, the effect of particle distribution on the macroscopic and microscopic response has been studied using three distinct types of three-dimensional (3D) finite-element model: a repeating unit cell, a multiparticle model, and a clustered particle model. While the repeating unit cell model represents a cubic periodic array of particles, the multiparticle model represents a random distribution of particles contained in a cube of matrix material, and the clustered particle model represents an artificially clustered distribution of particles. These models were used to study the macroscopic tensile stress-strain response as well as the underlying stress and strain fields. The results indicate that a clustered microstructure leads to a stiffer response with more hardening than that of random and periodic microstructures. Plastic flow and hydrostatic stress localization in the matrix and maximum principal stress localization in the particles are significantly higher in the clustered microstructure. Damage is expected to initiate in the cluster regions leading to low ductility.

Keywords

Material Transaction Hydrostatic Stress Equivalent Plastic Strain Maximum Principal Stress Particle Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Maruyama: Adv. Mater. Processes, 1999, vol. 6, pp. 47–50.Google Scholar
  2. 2.
    A.M. Murphy, S.J. Howard, and T.W. Clyne: Mater. Sci. Technol., 1998, vol. 14, pp. 959–68.Google Scholar
  3. 3.
    Y. Flom and R.J. Arsenault: Acta Metall., 1989, vol. 37, pp. 2413–23.CrossRefGoogle Scholar
  4. 4.
    T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composite, 1st ed., Cambridge University Press, Cambridge, MA, 1993.Google Scholar
  5. 5.
    T.H. Yip and Z. Wang: Mater. Sci. Technol., 1997, vol. 13, pp. 125–34.Google Scholar
  6. 6.
    Z. Zhou, H.X. Peng, Z. Fan, and D.X. Li: Mater. Sci. Technol., 2000, vol. 16, pp. 908–12.Google Scholar
  7. 7.
    J. Llorca, A. Needleman, and S. Suresh: Acta Metall. Mater., 1991, vol. 39, pp. 2317–35.CrossRefGoogle Scholar
  8. 8.
    Y.L. Shen, M. Finot, A. Needleman, and S. Suresh: Acta Metall. Mater., 1994, vol. 42, pp. 77–97.CrossRefGoogle Scholar
  9. 9.
    S.F. Corbin and D.S. Wilkinson: Acta Metall. Mater., 1994, vol. 42, pp. 1311–18.CrossRefGoogle Scholar
  10. 10.
    M. Geni and M. Kikuchi: Acta Mater., 1998, vol. 46, pp. 3125–33.CrossRefGoogle Scholar
  11. 11.
    J.W. Leggoe, A.A. Mammoli, M.B. Bush, and X.Z. Hu: Acta Mater., 1998, vol. 46, pp. 6075–88.CrossRefGoogle Scholar
  12. 12.
    M. Li, S. Ghosh, O. Richmond, H. Weiland, and T.N. Rouns: Mater. Sci. Eng., 1999, vol. A265, pp. 153–73.Google Scholar
  13. 13.
    J.D. Wolodko, Z. Xia, and F. Ellyin: Mater. Sci. Technol., 2000, vol. 16, pp. 837–42.Google Scholar
  14. 14.
    A. Borbely, H. Biermann, and O. Hartmann: Mater. Sci. Eng., 2001, vol. A313, pp. 34–45.Google Scholar
  15. 15.
    H.J. Bohm and W. Han: Modeling Simul. Mater. Sci. Eng., 2001, vol. 9, pp. 47–65.CrossRefGoogle Scholar
  16. 16.
    W. Han, A. Eckschlager, and H.J. Bohm: Compos. Sci. Technol., 2001, vol. 61, pp. 1581–90.CrossRefGoogle Scholar
  17. 17.
    H.J. Bohm, A. Eckschlager, and W. Han: Comput. Mater. Sci., 2002, vol. 25, pp. 42–53.CrossRefGoogle Scholar
  18. 18.
    J. Segurado and J. Llorca: J. Mech. Phys. Solids, 2002, vol. 50, pp. 2107–21.CrossRefGoogle Scholar
  19. 19.
    J. Segurado, J. Llorca, and C. Gonzalez: Scripta Mater., 2002, vol. 46, pp. 525–29.CrossRefGoogle Scholar
  20. 20.
    J. Segurado, C. Gonzalez, and J. Llorca: Acta Mater., 2003, vol. 51, pp. 2355–69.CrossRefGoogle Scholar
  21. 21.
    H. Shen and C.J. Lissenden: Mater. Sci. Eng., 2002, vol. A338, pp. 271–81.Google Scholar
  22. 22.
    C. Liu, G. Michal, and J.J. Lewandowski: in Residual Stresses in Composites, E.V. Barrera and I. Dutta, eds., TMS, Warrendale, PA, 1993, pp. 239–56.Google Scholar
  23. 23.
    ASM International Handbook Committee: Metals Handbook, ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2.Google Scholar
  24. 24.
    C.H. Andersson and R. Warren: Composites, 1984, vol. 15, pp. 16–23.CrossRefGoogle Scholar
  25. 25.
    ABAQUS Standard Ver. 5–8 Theory Manual, Hibbitt, Karlsson, Sorensen, Inc., Pawtucket, RI, 1997.Google Scholar
  26. 26.
    H. Shen: Ph.D. Thesis, Pennsylvania State University, University Park, PA, 2003.Google Scholar
  27. 27.
    C.Z. Mooney: Monte Carlo Simulation, Sage Publications, Thousand Oaks, CA, 1997.Google Scholar
  28. 28.
    J.R. Brockenbrough, S. Suresh, and H.A. Wienecke: Acta Metall. Mater., 1991, vol. 39, pp. 735–52.CrossRefGoogle Scholar
  29. 29.
    X. Lei and C.J. Lissenden: in Composite Materials: Testing and Design, Fourteenth Volume, ASTM STP 1436, C.E. Bakis, ed., ASTM International, West Conshohocken, PA, 2003, pp. 255–72.Google Scholar
  30. 30.
    Z. Hashin and S. Shtrikman: J. Mech. Phys. Solids, 1963, vol. 12, pp. 127–40.CrossRefGoogle Scholar
  31. 31.
    D. McDanels: Metall. Trans. A, 1985, vol. 16A, pp. 1105–15.Google Scholar
  32. 32.
    J.D. Eshelby: Proc. R. Soc. London, 1957, vol. A241, pp. 376–396.Google Scholar
  33. 33.
    R.J. Arsenault, N. Shi, C.R. Feng, and L. Wang: Mater. Sci. Eng., 1991, vol. 131, pp. 55–68.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • H. Shen
    • 2
  • C. J. Lissenden
    • 1
  1. 1.the Department of Engineering Science and MechanicsPennsylvania State UniversityUniversity Park
  2. 2.Dept. of Mechanical EngngNorthwestern UniversityEvanston

Personalised recommendations