Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Using genetic algorithms to evolve three-dimensional microstructures from two-dimensional micrographs


The article describes work to bring together the topics of evolutionary computing and stereology and asks the reader to judge whether such an approach can be genuinely useful or just represents a clever application of computer science. The problem we address is that of constructing three-dimensional (3-D) microstructures from two-dimensional (2-D) micrographs. Our solution is a computer program called MicroConstructor that evolves 3-D discrete computer microstructures, which are statistically equivalent to the 2-D inputs in terms of the microstructural variables of interest. The core of Micro-Constructor is a genetic algorithm that evolves the 3-D microstructure so that its stereological parameters match the 2-D data. MicroConstructor uses a general method of pattern construction, the EmbryoCA, that does not require intervention from the user and is highly evolvable. This article presents initial results from successful experiments to evolve 3-D two-phase microstructures from 2-D input microstructures. The advantages and disadvantages of the method are discussed, and we conclude that the method, though delightfully elegant and full of potential, has yet to prove itself capable of constructing 3-D microstructures that would interest experimentalists and computer modelers.

This is a preview of subscription content, log in to check access.


  1. 1.

    D. Raabe: Computational Materials Science: The Simulation of Materials, Microstructures and Properties, Wiley, Weinheim, 1998.

  2. 2.

    Proc. 1st Joint Int. Conf. on Recrystallization and Grain Growth, G. Gottstein, ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 2001.

  3. 3.

    M.A. Miodownik, A. Godfrey, E.A. Holm, and D.A. Hughes: Acta Mater., 1999, vol. 47, pp. 2661.

  4. 4.

    M.V. Kral, M.A. Mangan, G. Spanos et al.: Mater. Characterization, 2000, vol. 45, pp. 17–23.

  5. 5.

    J.E. Spowart, H.M. Mullens, and B.T. Puchala: JOM-J. Min. Met. Mater., 2003, vol. 55, pp. 35–37.

  6. 6.

    M.S. Li, S. Ghosh, T.N. Rouns et al.: Mater. Characterization, 1998, vol. 88, pp. 73–83.

  7. 7.

    M. Li, S. Ghosh, O. Richmond, H. Weiland, and T.N. Rouns: Mater. Sci. Eng. A-Struct., 1999, vol. 265, pp. 153–73.

  8. 8.

    M.V. Kral and G. Spanos: Acta Mater., 1999, vol. 265, pp. 711–24.

  9. 9.

    C.Y. Hung, G. Spanos, R.O. Rosenberg, and M.V. Kral: Acta Mater., 2002, vol. 50, pp. 3781–88.

  10. 10.

    N.C.W. Kuijpers, J. Tirel, D.N. Hanlon et al.: Mater. Characterization, 2002, vol. 48, pp. 379–92.

  11. 11.

    T. Yokomizo, M. Enomoto, O. Umezawa, G. Spanos, and R.O. Rosenberg: Mater Sci. Eng. A-Struct., 2003, vol. 344, pp. 261–67.

  12. 12.

    V. Randle and R.O. Engle: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Gordon and Breach, London, 2000.

  13. 13.

    V. Randle and H. Davies: Ultramicroscopy, 2002, vol. 90, pp. 153–62.

  14. 14.

    M.A. Wall, A.J. Schwartz, and L. Nguyen: Ultramicroscopy, 2001, vol. 88, pp. 73–83.

  15. 15.

    S.F. Nielsen, E.M. Lauridsen, D. Juul Jensen, and H.F. Poulsen: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 179–81.

  16. 16.

    X. Fu, H.F. Poulsen, S. Schmidt et al.: Scripta Mater., 2003, vol. 49, pp. 1093–96.

  17. 17.

    E.M. Lauridsen, S.F. Nielsen, L. Margulies et al.: J. Phys. IV, 2003, vol. 104, pp. 495–98.

  18. 18.

    S. Torquato: Random Heterogeneous Materials, Springer-Verlag, Berlin, 2001.

  19. 19.

    S. Torquato: Ann. Rev. Mater. Res., 2002, vol. 32, pp. 77–111.

  20. 20.

    P.M. Adler: Porous Media—Geometry and Transports, Butterworth-Heinemann, London, 1992, p. 24.

  21. 21.

    M.D. Rintoul and S. Torquato: J. Coll. Interface Sci., 1997, vol. 186, pp. 467–76.

  22. 22.

    C.L.Y. Yeong and S. Torquato: Phys. Rev. E, 1998, vol. 57, pp. 495–506.

  23. 23.

    C.L.Y. Yeong and S. Torquato: Phys. Rev. E, 1998, vol. 58, pp. 224–33.

  24. 24.

    C. Manwart, S. Torquato, and R. Hilfer: Phys. Rev. E, 2000, vol. 62, pp. 893–99.

  25. 25.

    N. Sheehan and S. Torquato: J. Appl. Phys., 2001, vol. 89, pp. 53–60.

  26. 26.

    D. Basanta, M.A. Miodownik, E.A. Holm, and P.J. Bentley: Computer-Based Design, Engineering Design Conf. 2002, Tamer Shahin, ed., Professional Engineering Publishing Ltd., London, 2002, pp. 349–55,

  27. 27.

    D. Basanta, P.J. Bentley, M.A. Miodownik, and E.A. Holm: Genetic Programming, Proc. 6th Eur. Conf., EuroGP 2003, Springer, Berlin, 2003, pp. 1–10.

  28. 28.

    Charles Darwin: The Origin of Species by Means of Natural Selection, Penguin, London, 1868.

  29. 29.

    David E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Berlin, 1989.

  30. 30.

    Melanie Mitchell: An Introduction to Genetic Algorithms, The MIT Press, Cambridge, MA, 1998.

  31. 31.

    P.J. Bentley: Evolutionary Design by Computers, Morgan Kaufmann, San Francisco, CA, 1999.

  32. 32.

    S. Kumar and P.J. Bentley: On Growth, Form and Computers, Elsevier Academic Press, London, 2003.

  33. 33.

    S. Kumar and P.J. Bentley: in On Growth, Form and Development, S. Kumar and P.J. Bentley, Academic Press, New York, NY, 2003.

  34. 34.

    P. Ball: The Self Made Tapestry, Oxford University Press, Oxford, United Kingdom, 1999.

  35. 35.

    L. Wolpert: Principles of Development, 2nd ed., Oxford University Press, Oxford, United Kingdom, 2002.

  36. 36.

    J. von Neumann: Theory of Self-Reproducing Automata, University of Illinois Press, 1966.

  37. 37.

    J.B. Spillman, T. Zeng, and R.O. Claus: Smart Mater. Struct., 2002, vol. 11, pp. 623–30.

  38. 38.

    Julian Miller: ECAL 2003, Dortmund, Germany, 2003.

  39. 39.

    D. Raabe: Ann. Rev. Mater. Res., 2002.

  40. 40.

    J. Lohn and J. Reggia: 1995 IEEE Int. Conf. on Evolutionary Computing, 1995.

  41. 41.

    Edward F. Moore: American Mathematical Society Proc. Symp. in Applied Mathematics, 1962, vol. 14, pp. 17–33.

  42. 42.

    John C. Russ and Robert T. Dehoff: Practical Stereology, 2nd ed., Kluwer Academic, New York, NY, 2000.

  43. 43.

    T.A. Mason and B.L. Adams: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 969–79.

  44. 44.

    Ervin E. Underwood: Quantitative Stereology, Addison-Wesley, Reading, MA, 1970.

  45. 45.

    P.J. Bentley and J.P. Wakefield: Soft Computing in Engineering Design and Manufacturing, P.K. Chawdhry, R. Roy, and R.K. Pant, eds., Springer-Verlag London Limited, London, 1997, Part 5, pp. 231–40.

  46. 46.

    D. Basanta, M.A. Miodownik, P.J. Bentley, and E.A. Holm: “Investigating the Evolvability of Biologically Inspired Cellular Automata,” 2004, in press.

Download references

Author information

Additional information

This article is based on a presentation made in the symposium entitled “Three Dimensional Materials Science” during the 2003 MS&T ’03: Materials Science & Technology Conference 2003 in Chicago, Illinois, on November 11 & 12, 2003, under the auspices of the ASM/MSCTS: Materials Science Critical Technology Sector Committee and the TMS/SMD: Structural Materials Division Committee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Basanta, D., Miodownik, M.A., Holm, E.A. et al. Using genetic algorithms to evolve three-dimensional microstructures from two-dimensional micrographs. Metall and Mat Trans A 36, 1643–1652 (2005).

Download citation


  • Genetic Algorithm
  • Material Transaction
  • Fitness Function
  • Cellular Automaton
  • Phase Particle