Skip to main content
Log in

Fragmentation of faceted dendrite in solidification of undercooled B-doped Si melts

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The fragmentation of the faceted dendrite of B-doped Si solidified from the undercooled melt was investigated using an electromagnetic levitator. The 〈110〉 dendrites, which grew at ΔT <∼100 K, never fragmented because they were composed of {111} planes with the lowest interface energy. On the other hand, the 〈100〉 dendrites, which grew at ΔT>∼100 K, showing fourfold axial symmetry, broke up into small pieces at undercoolings of more than 200 K. It was suggested that the capillary force acts on the interface with a relatively high energy to break up the dendrite into small pieces, since the 〈100〉 dendrites are composed of {110} and {100} planes with interface energies larger than that of the {111} plane. Moreover, striations of concentric circles formed by the segregation of B revealed that the remaining melt solidifies from the surface toward the center to engulf the fragmented dendrites. This solidification process seems different from those of typical metallic materials, in which the fragmented dendrites are randomly distributed throughout the sample and the remaining liquid solidifies from the fragmented dendrites. This solidification characteristic was discussed in relation to the influence of electromagnetic force on the microstructure of Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Munitz and G.J. Abbaschian: in Undercooled Alloy Phases, E.W. Collings and C.C. Koch, eds., TMS, Warrendale, PA, 1987, pp. 23–48.

    Google Scholar 

  2. J.L. Walker: in The Physical Chemistry of Process Metallurgy, G.R. St. Pierre, ed., Interscience, New York, NY, 1961, Part II, pp. 845–53.

    Google Scholar 

  3. G.L.F. Powell and L.M. Hogan: Trans. TMS-AIME, 1968, vol. 242, pp. 2133–38.

    CAS  Google Scholar 

  4. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, and T.P. Seward, III: Trans. TMS-AIME, 1966, vol. 236, pp. 149–58.

    CAS  Google Scholar 

  5. A. Karma: Int. J. Non-Equil. Proc., 1998, vol. 11, pp. 201–33.

    CAS  Google Scholar 

  6. M. Schwarz, A. Karma, K. Eckler, and D.M. Herlach: Phys. Rev. Lett., 1994, vol. 73, pp. 1380–83.

    Article  CAS  Google Scholar 

  7. G. Devaud and D. Turnbull: Acta Metall., 1987, vol. 35, pp. 765–69.

    Article  CAS  Google Scholar 

  8. C.F. Lau and H.W. Kui: Acta Metall. Mater., 1993, vol. 41, pp. 1999–2005.

    Article  CAS  Google Scholar 

  9. D. Li, K. Eckler, and D.M. Herlach: J. Cryst. Growth, 1996, vol. 160, pp. 59–65.

    Article  CAS  Google Scholar 

  10. S.E. Battersby, R.F. Cochrane, and A.M. Mullis: J. Mater. Sci., 1999, vol. 34, pp. 2049–56.

    Article  CAS  Google Scholar 

  11. D. Li and D.M. Herlach: Europhys. Lett., 1996, vol. 34, pp. 423–28.

    Article  CAS  Google Scholar 

  12. T. Aoyama, Y. Takamura, and K. Kuribayashi: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1333–39.

    CAS  Google Scholar 

  13. K. Nagashio and K. Kuribayashi: Acta Mater. 2005, vol. 53, pp. 3021–29.

    Article  CAS  Google Scholar 

  14. K. Nagashio, A. Watcharapasorn, K.T. Zawilski, R.C. DeMattei, R.S. Feigelson, L. Bai, N. Giles, L. Halliburton, and P.G. Schunemann: J. Cryst. Growth, 2004, vol. 269, pp. 195–206.

    Article  CAS  Google Scholar 

  15. S.M. Sze: in Physics of Semiconductor Devices, John Wiley & Sons, Inc., New York, NY, 1981, p. 33.

    Google Scholar 

  16. T. Aoyama and K. Kuribayashi: Acta Mater., 2000, vol. 48, pp. 3739–44.

    Article  CAS  Google Scholar 

  17. J. Lipton, W. Kurz, and R. Trivedi: Acta Metall., 1987, vol. 35, pp. 957–64.

    Article  CAS  Google Scholar 

  18. Z. Jian, K. Nagashio, and K. Kuribayashi: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2947–53.

    CAS  Google Scholar 

  19. R.S. Wagner: Acta Metall., 1960, vol. 8, pp. 57–60.

    Article  Google Scholar 

  20. D.R. Hamilton and R.G. Seidensticker: J. Appl. Phys., 1960, vol. 31, pp. 1165–68.

    Article  CAS  Google Scholar 

  21. P.J. Hesketh, C. Ju, S. Gawda, E. Zanoria, and S. Danyluk: J Electrochem. Soc., 1993, vol. 140, pp. 1080–85. This article reports the surface energy of Si. However, it is assumed that the relative relationship in the S/L interface energies of low-index planes is similar to that in the surface energies of low-index planes.

    Article  CAS  Google Scholar 

  22. R.J. Schaefer and M.E. Glicksman: Trans. TMS-AIME, 1967, vol. 239, pp. 257–60.

    CAS  Google Scholar 

  23. M. Li, T. Ishikawa, K. Nagashio, K. Kuribayashi, and S. Yoda: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3254–57.

    Article  CAS  Google Scholar 

  24. H. Yasuda, I. Ohnaka, Y. Ninomiya, R. Ishii, S. Fujita, and K. Kishio: J. Cryst. Growth, 2004, vol. 260, pp. 475–85.

    Article  CAS  Google Scholar 

  25. H. Yasuda, Osaka University, Osaka, Japan, private communication, 2005.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagashio, K., Kuribayashi, K., Okamoto, H. et al. Fragmentation of faceted dendrite in solidification of undercooled B-doped Si melts. Metall Mater Trans A 36, 3407–3413 (2005). https://doi.org/10.1007/s11661-005-0014-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0014-6

Keywords

Navigation