Skip to main content
Log in

A hybrid micromechanical-macroscopic model for the analysis of the tensile behavior of cavitating materials

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new approach, which combines both micromechanical and macroscopic perspectives of deformation, was developed to simulate the uniaxial tensile deformation of cavitating materials. By this means, limitations and assumptions of previous models were avoided. These include the limitation to the analysis of a symmetric cavity array and a representative unit cell (microscopic models) and the assumption of a homogeneous cavity distribution and failure at a predefined critical cavity volume fraction (macroscopic models). The new model takes into account local variations in cavity density and the possible coalescence of discrete pairs of cavities not necessarily located on the same horizontal plane. The propensity for cavity coalescence via impingement or linkage (due to matrix rupture) was found to depend heavily on the initial cavity density. Simulations of the uniaxial tension test demonstrated that flow localization and thus failure occur earlier during the deformation and cavitation process when local cavity density variations are taken into account. However, the predicted cavity volume fraction at failure is the same for both the hybrid micro-macro and macroscopic models when the initial cavity density is high. In such cases, the predicted tensile ductility is therefore essentially identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Bampton and J.W. Edington: J. Eng. Mater. Technol., 1983, vol. 105, pp. 55–60.

    Article  Google Scholar 

  2. S.L. Semiatin, P.D. Nicolaou, T.R. Bieler, and A.K. Ghosh: Materiaux Techniques, 2002, Nos. 5–6, pp. 31–40.

    Google Scholar 

  3. D.H. Bae and A.K. Ghosh: Acta Mater., 2002, vol. 50, pp. 511–23.

    Article  CAS  Google Scholar 

  4. S.L. Semiatin, V. Seetharaman, A.K. Ghosh, E.B. Shell, M.P. Simon, and P.N. Fagin: Mater. Sci. Eng. A, 1998, vol. A256, pp. 92–110.

    Article  Google Scholar 

  5. B.P. Kashyap and M.K. Mukherjee: Res. Mechanica, 1986, vol. 17, pp. 293–355.

    Google Scholar 

  6. M.B. Taylor, H.M. Zbib, and M.A. Khaleed: Int. J. Plasticity, 2002, vol. 18, pp. 415–42.

    Article  CAS  Google Scholar 

  7. J. Pilling: Mater. Sci. Technol., 1985, vol. 1, pp. 461–66.

    Google Scholar 

  8. M.M.I. Ahmed and T.G. Langdon: Metall. Trans. A, 1977, vol. 8A, pp. 1832–33.

    CAS  Google Scholar 

  9. P.D. Nicolaou and S.L. Semiatin: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2621–30.

    Article  CAS  Google Scholar 

  10. M. Zaki: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1043–46.

    Google Scholar 

  11. P.A. Friedman and A.K. Ghosh: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3827–39.

    Google Scholar 

  12. K. Kannan and C.H. Hamilton: Scripta Mater., 1997, vol. 37, pp. 455–62.

    Article  CAS  Google Scholar 

  13. J. Lian and M. Suery: Mater. Sci. Technol., 1986, vol. 2, pp. 1093–98.

    CAS  Google Scholar 

  14. P.D. Nicolaou, S.L. Semiatin, and C.M. Lombard: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3112–19.

    Google Scholar 

  15. A.K. Ghosh and R.A. Ayres: Metall. Trans. A, 1976, vol. 7A, pp. 1589–91.

    CAS  Google Scholar 

  16. P.W. Bridgman: Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, NY, 1952, ch. 1.

    Google Scholar 

  17. M.J. Stowell: in Superplastic Forming of Structural Alloys, N.E. Paton and C.H. Hamilton, eds., TMS-AIME, Warrendale, PA, 1982, pp. 321–26.

    Google Scholar 

  18. W.M. Garrison Jr. and N.R. Moody: J. Phys. Mech. Solids, 1987, vol. 48, pp. 1035–74.

    Article  CAS  Google Scholar 

  19. P.D. Nicolaou and S.L. Semiatin: Acta Mater, 1999, vol. 47, pp. 3679–86.

    Article  CAS  Google Scholar 

  20. P.D. Nicolaou and S.L. Semiatin: Acta Mater, 2000, vol. 48, pp. 3441–50.

    Article  CAS  Google Scholar 

  21. A.B. Geltmacher, D.A. Koss, P. Matic, and M.G. Stout: Acta Mater., 1996, vol. 44, pp. 2201–10.

    Article  Google Scholar 

  22. A.B. Geltmacher, Koss, M.G. Stout, and P. Matic: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 775–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolaou, P.D., Semiatin, S.L. A hybrid micromechanical-macroscopic model for the analysis of the tensile behavior of cavitating materials. Metall Mater Trans A 35, 1141–1149 (2004). https://doi.org/10.1007/s11661-004-1017-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-1017-4

Keywords

Navigation