Skip to main content
Log in

Cr−Mo solid solutions forced by high-energy ball milling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mixtures of Cr and Mo elemental powders, with the nominal compositions Cr25Mo75, Cr50Mo50, and Cr75Mo25, are processed by high-energy ball milling at ambient temperature. Milling is observed to force the mixing of the immiscible bcc elements Cr and Mo into solid solutions. The lattice parameter of these solid solutions, measured by X-ray diffraction (XRD), displays the expected positive deviation from Vegard's law. These deviations are compared to the ones predicted by Eshelby's inclusion model for dilute alloys. The conventional Williamson-Hall approach is shown to fail to determine the grain size in as-milled samples, probably due to the high density of dislocations. Annealing at 700 °C for 10 hours under argon leads to a large reduction in structural defect density, without inducing any significant decomposition. The mixing measured in Cr−Mo is discussed in the broader context of the mechanical mixing forced by ball milling in moderately immiscible systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Gilman and J.S. Benjamin: Ann. Rev. Mater. Sci., 1983, vol. 13, pp. 279–300.

    Article  CAS  Google Scholar 

  2. C.C. Koch: in Materials Science and Technology, vol. 15, Mechanical Milling and Alloying, R.W. Cahn, P. Haasen, and E.J. Kramer, eds., VCH, Weinheim, 1991, pp. 193–249.

    Google Scholar 

  3. E. Ma and M. Atzmon: Mater. Chem. Phys. 1995, vol. 39, pp. 249–67.

    Article  CAS  Google Scholar 

  4. L. Lü and M.O. Lai: Mechanical Alloying, Kluwers, Norwell, MA, 1998.

    Google Scholar 

  5. C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  6. T.D. Shen and C.C. Koch: Mater. Sci. Forum, 1995, vols. 179–181, pp. 17–24.

    Google Scholar 

  7. C. Gente, M. Oehring, and R. Bormann: Phys. Rev. B, 1993, vol. 48, pp. 13244–13252.

    Article  CAS  Google Scholar 

  8. J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye: J. Mater. Res., 1997, vol. 12, pp. 936–46.

    Article  CAS  Google Scholar 

  9. F. Delogu, M. Pintore, S. Enzo, F. Cardellini, V. Contini, A. Montone, and V. Rosato: Phil. Mag. B, 1997, vol. 76, pp. 651–62.

    Article  CAS  Google Scholar 

  10. K. Uenishi, K.F. Kobayashi, K.N. Ishihara, and P.H. Shingu: Mater. Sci. Eng. A, 1991, vol. 134, pp. 1342–45.

    Article  Google Scholar 

  11. T. Klassen, U. Herr, and R.S. Averback: Acta Mater., 1997, vol. 45, pp. 29219–292130.

    Google Scholar 

  12. G. Le Caër, P. Delcroix, T.D. Shen, and B. Malaman: Phys. Rev. B, 1996, vol. 54, pp. 12775–12786.

    Article  Google Scholar 

  13. E. Ma, J.-H. He, and P.J. Schilling: Phys. Rev. B, 1997, vol. 55, pp. 5542–45.

    Article  CAS  Google Scholar 

  14. A.R. Yavari, P.J. Desre, and T. Benameur: Phys. Rev. Lett., 1992, vol. 68, pp. 2235–38.

    Article  CAS  Google Scholar 

  15. J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson: J. Appl. Phys., 1993, vol. 73, pp. 2794–2802.

    Article  CAS  Google Scholar 

  16. E. Ma, M. Atzmon, and F.E. Pinkerton: J. Appl. Phys., 1993, vol. 74, pp. 955–62.

    Article  CAS  Google Scholar 

  17. J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye: Acta Mater., 1997, vol. 45, pp. 113–24.

    Article  CAS  Google Scholar 

  18. E. Gaffet, C. Louison, M. Harmelin, and F. Faudot: Mater. Sci. Eng. A, 1991, vol. 134, pp. 1380–84.

    Article  Google Scholar 

  19. J. Kuyama, H. Inui, S. Imaoka, S. Nasu, K.N. Ishihara, and P.H. Shingu: Jpn. J. Appl. Phys., 1991, vol. 30, pp. L854-L856.

    Article  CAS  Google Scholar 

  20. M. Angiolini, M. Krasnowski, G. Mazzone, A. Montone, M. Urchulutegui, and M. Vittori-Antisari: Mat. Sci. Forum, 1995, vol. 195, pp. 13–18.

    Article  CAS  Google Scholar 

  21. J. Xu, U. Herr, T. Klassen, and R.S. Averback: J. Appl. Phys., 1996, vol. 79, pp. 3935–45.

    Article  Google Scholar 

  22. P. Bellon and R.S. Averback: Phys. Rev. Lett., 1995, vol. 74, pp. 1819–22.

    Article  CAS  Google Scholar 

  23. T. Koyano, T. Takizawa, T. Fukunaga, U. Mizutani, S. Kamizuru, E. Kita, and A. Tasaki: J. Appl. Phys., 1993, vol. 73, pp. 429–33.

    Article  CAS  Google Scholar 

  24. M. Godet: Wear, 1984, vol. 100, pp. 437–52.

    Article  Google Scholar 

  25. D.A. Rigney, L.H. Chen, M.G.S. Naylor, and A.R. Rosenfield: Wear, 1984, vol. 100, pp. 195–219.

    Article  CAS  Google Scholar 

  26. D.A. Rigney: Wear, 2000, vol. 245, pp. 1–9.

    Article  CAS  Google Scholar 

  27. L. Chaffron, Y. Le Bouar, and G. Martin: C. R. Acad. Sci. Paris, 2001, vol. t, 2, ser. IV, pp. 749–59.

    CAS  Google Scholar 

  28. Y. Le Bouar, L. Chaffron, G. Saint-Ayes, and G. Martin: Scripta Mater, 2003, vol. 49, pp. 985–90.

    Article  CAS  Google Scholar 

  29. W.G. Moffatt: The Handbook of Binary Phase Diagrams, General Electric Company, Schenectady, NY, 1978, vol. 2.

    Google Scholar 

  30. Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Landolt-Börnstein, New Series IV, vol. 5d, O. Madelung, ed., Springer-Verlag, Berlin, 1994.

    Google Scholar 

  31. R. Najafabadi, D.J. Srolovitz, E. Ma, and M. Atzmon: J. Appl. Phys., 1993 vol. 74, pp. 3144–49.

    Article  CAS  Google Scholar 

  32. Fang Wu, P. Bellon, A.J. Melmed, and T.A. Lusby: Acta Mater., 2001, vol. 49, pp. 453–61.

    Article  CAS  Google Scholar 

  33. S. Zghal, M. Hytch, J.-P. Chevalier, R. Twesten, F. Wu, and P. Bellon: Acta Mater., 2002, vol. 50, pp. 4695–709.

    Article  CAS  Google Scholar 

  34. S. Zghal, R. Twesten, F. Wu, and P. Bellon: Acta Mater., 2002, vol. 50, pp. 4711–26.

    Article  CAS  Google Scholar 

  35. T.D. Shen and C.C. Koch: Acta Mater., 1996, vol. 44, pp. 753–61.

    Article  Google Scholar 

  36. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  37. C.C. Koch: Nanostruct. Mater., 1997, vol. 9, pp. 13–22.

    Article  CAS  Google Scholar 

  38. A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials, Oxford Press, Oxford, United Kingdom 1995, pp. 426–29.

    Google Scholar 

  39. G. Leibfried and N. Breuer: Point Defects in Metals I, Springer Tracts in Modern Physics, Springer-Verlag, Berlin, 1978, vol. 81, pp. 120–29.

    Google Scholar 

  40. C. Barrett and T.B. Massalski: Structure of Metals, 3rd ed., Pergamon Press, Oxford, United Kingdom, 1980, pp. 451–53.

    Google Scholar 

  41. F.W. Gayle and F.S. Biancaniello: Nanostruct. Mater., 1995, vol. 6, pp. 429–32.

    Article  CAS  Google Scholar 

  42. A. Revész, T. Ungár, A. Borbély, and J. Lendvai: Nanostruct. Mater. 1996, vol. 7, pp. 779–88.

    Article  Google Scholar 

  43. M. Murayama, J.M. Howe, H. Hidaka, and S. Takaki: Science, 2002, vol. 295, pp. 2433–35.

    Article  CAS  Google Scholar 

  44. F. Wu: Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 2002.

  45. ASM Handbook, vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Materials Park. Ott, 1990, p. 1140.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, J.D., Wu, F. & Bellon, P. Cr−Mo solid solutions forced by high-energy ball milling. Metall Mater Trans A 35, 1105–1111 (2004). https://doi.org/10.1007/s11661-004-1013-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-1013-8

Keywords

Navigation