Skip to main content
Log in

Morphologies of silicon crystals solidified on a chill plate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electromagnetically levitated liquid droplets of pure Si or a Si-Ge alloy were cooled to different temperatures and then dropped onto a chill plate of Cu. Droplet oscillations mark the solid/liquid interface during solidification and permit the different crystal morphologies of silicon to be observed on the quenched surface by scanning electron microscopy (SEM). A spherical morphology found on the quenched surface represents the initial stage of crystal growth. Further growth leads to octahedral crystals bounded by {111} faces near equilibrium and to other polyhedra or even faceted dendrites further from equilibrium. The spherical growth can be observed only when the initial melt undercooling is moderately high. The critical size at which spherical crystals start to develop dendritic growth is much higger than that calculated from the Mullins and Sekerka model, and is bigger than the Coriell and Parker model when kinetic undercooling is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fredriksson, M. Hillert, and N. Lange: J. Inst. Met., 1973, vol. 101, pp. 285–99.

    CAS  Google Scholar 

  2. A. Sundarrajan, A. Mortensen, T.Z. Kattamis, and M.C. Flemings: Acta Metall. Mater., 1998, vol. 46, pp. 91–99.

    CAS  Google Scholar 

  3. D.L. Zhang and B. Cantor: Metall. Trans. A, 1993, vol 24A, pp. 1195–204.

    CAS  Google Scholar 

  4. D. Liang, Y. Bayraktar, and H. Jones: Acta Metall. Mater., 1995, vol. 43, pp. 579–85.

    Article  CAS  Google Scholar 

  5. P. Magnin, J.T. Mason, and R. Trivedi: Acta Metall. Mater., 1991, vol. 39, pp. 469–80.

    Article  CAS  Google Scholar 

  6. M. Pierantoni, M. Gremaud, P. Magnin, D. Stoll, and W. Kurz: Acta Metall. Mater., 1992, vol. 40, pp. 1637–44.

    Article  CAS  Google Scholar 

  7. M. Gremaud, D.R. Allen, M. Rappaz, and J.H. Perepezko: Acta Metall. Mater., 1996, vol. 44, pp. 2669–81.

    Google Scholar 

  8. L.N. Brush, G.B. McFadden, and S.R. Coriell: J. Cryst. Growth, 1994, vol. 137, pp. 355–74.

    Article  CAS  Google Scholar 

  9. O.A. Atasoy, F. Yilmaz, and R. Elliott: J. Cryst. Growth, 1984, vol. 66, pp. 137–46.

    Article  CAS  Google Scholar 

  10. S.Z. Lu and A. Hellawell: J. Cryst. Growth, 1985, vol. 73, pp. 316–28.

    Article  CAS  Google Scholar 

  11. K.F. Kobayashi and L.M. Hogan: J. Mater. Sci., 1986, vol. 20, pp. 1961–75.

    Article  Google Scholar 

  12. K. Song, T. Kikuchi, M. Yoshida, and H. Nakae: J. Jpn. Inst. Met., 1994, vol. 58, pp. 1454–59.

    CAS  Google Scholar 

  13. J.W. Faust Jr and H.F. John: J. Phys. Chem. Solids, 1964, vol. 25, pp. 1407–15.

    Article  CAS  Google Scholar 

  14. R.Y. Wang, W.H. Lu, and L.M. Hogan: Mater. Sci. Technol., 1995, vol. 11, pp. 441–49.

    CAS  Google Scholar 

  15. R.Y. Wang, W.H. Lu, and L.M. Hogan: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1233–43.

    Article  Google Scholar 

  16. R.Y. Wang, W.H. Lu, and L.M. Hogan: J. Cryst. Growth, 1999, vol. 207, pp. 43–54.

    Article  CAS  Google Scholar 

  17. R.S. Wagner: Acta Metall., 1960, vol. 8, pp. 57–60.

    Article  Google Scholar 

  18. G. Devaud and D. Turnbull: Acta Metall., 1987, vol. 35, pp. 765–69.

    Article  CAS  Google Scholar 

  19. P.V. Evans, S. Vitta, R.G. Hamerton, A.L. Greer, and D. Turnbull: Acta Metall. Mater., 1990, vol. 38, pp. 233–42.

    Article  CAS  Google Scholar 

  20. D. Li and D.M. Herlach: Phys. Rev. Lett., 1996, vol. 77, pp. 1801–04.

    Article  Google Scholar 

  21. S.E. Battersby, R.F. Cochrane, and A.M. Mullis: J. Mater. sci., 1999, vol. 34, pp. 2049–56.

    Article  CAS  Google Scholar 

  22. C.F. Lau and H.W. Kui: Acta Metall. Mater., 1991, vol. 39, pp. 323–27.

    Article  CAS  Google Scholar 

  23. C.F. Lau and H.W. Kui: Acta Metall. Mater., 1994, vol. 42, pp. 3811–16.

    Article  CAS  Google Scholar 

  24. R.P. Liu, W.K. Wang, D. Li, and D.M. Herlach: Scripta Mater., 1999, vol. 41, pp. 855–60.

    Article  CAS  Google Scholar 

  25. G. Devaud and D. Turnbull: Appl. Phys. Lett., 1985, vol. 46, pp. 844–47.

    Article  CAS  Google Scholar 

  26. D. Li and D.M. Herlach: Europhys. Lett., 1996, vol. 34, pp. 423–28.

    Article  Google Scholar 

  27. T. Aoyama, Y. Takamura, and K. Kuribayashi: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1333–39.

    Article  Google Scholar 

  28. A.J. Rulison and W.K. Rhim: Metall. Mater. Trans. B, 1994, vol. 26, pp. 503–10.

    Article  Google Scholar 

  29. Y. Shao and F. Spaepen: J. Appl. Phys., 1996, vol. 79, pp. 2981–85.

    Article  Google Scholar 

  30. A.L. Greer: Mater. Sci. Eng. A, 1991, vol. 133, pp. 16–21.

    Article  Google Scholar 

  31. T. Jida and R.I.L. Guthrie: Physical Properties of Liquid Metals, Oxford Science Publications, Clarendon Press, Oxford, United Kingdom, 1993, p. 91.

    Google Scholar 

  32. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1963 vol. 34, pp. 323–29.

    Article  CAS  Google Scholar 

  33. S.R. Coriell and R.L. Parker: in Crystal Growth, H.S. Peiser, ed., Pergamon Press, Oxford, United Kingdom, 1967, pp. 703–08.

    Google Scholar 

  34. C.A. Macdonald, A.M. Malvezzi, and F. Spaepen: J. Appl. Phys., 1989, vol. 65, pp. 129–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R.P., Herlach, D.M., Vandyoussefi, M. et al. Morphologies of silicon crystals solidified on a chill plate. Metall Mater Trans A 35, 1067–1073 (2004). https://doi.org/10.1007/s11661-004-1009-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-1009-4

Keywords

Navigation