Skip to main content
Log in

Liquid convection effects on the pushing-engulfment transition of insoluble particles by a solidifying interface: Part I. Analytical calculation of the lift forces

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

During the solidification of a liquid containing insoluble particles, the particles can be instantaneously engulfed, or continuously pushed, or pushed and subsequently engulfed. A critical velocity for the pushing-engulfment transition is observed experimentally. Most models proposed to date ignore the complications arising from the liquid convection ahead of the solid-liquid interface. They simply solve the balance between the attractive drag force exercised by the liquid on the particle and the repulsive interfacial force. This work is an effort to calculate analytically the lift forces (Saffman and Magnus forces) under certain assumptions regarding the nature of fluid flow ahead of the solid/liquid interface. This makes possible the quantitative evaluation of the three experimentally observed regimes occurring during particle-interface interaction: (1) at low convection—no effect on the critical velocity for the particle engulfment transition; (2) at intermediate convection—increased critical velocity; (3) at high convection—no particle-interface interaction.

The model was applied to evaluate the gravity level required for microgravity experimental work on particle pushing where the effect of liquid convection during solidification is negligible. This is necessary to validate existing theoretical models that do not take into account fluid flow parallel to the solidification interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C A :

coefficient for the virtual added mass force

F D :

drag force

F g :

gravity force

F I :

pushing force due to surface energy interactions

F M :

Magnus force

F S :

Saffman force

F VM :

force to accelerate virtual added mass of the particle

L :

distance between the center of the particle and the unperturbed solid/liquid interface, characteristic length

L*:

nondimensional distance between the center of the particle and the unperturbed solid/liquid interface

L ref :

reference length

RI t :

position of the tip of the SL interface

RI t *:

position of the tip of the SL interface in nondimensional form

R P :

radius of the particle

Re:

flow Reynolds number

V 0 :

far-field convection velocity

V 100 :

convection velocity at 100 µm from the interface

V Lx :

liquid velocity in the x direction

V P :

particle velocity

V ref :

reference velocity

V rel :

velocity of the particle relative to the liquid

V SL :

solidification velocity

We:

Weber number

a 0 :

atomic diameter

d :

distance between the particle and the solid/liquid interface

g :

gravitational acceleration

k L :

thermal conductivity of liquid

k P :

thermal conductivity of particle

k*:

ratio of k P by k L

m P :

mass of the particle

t :

time

t ref :

reference time

x, y, z :

coordinate axes

α :

switching variable, angle between the gravity vector and SL interface

β :

switching variable

Δγ 0 :

surface energy difference

δ :

boundary layer width

η :

dynamic viscosity of the melt

v :

kinematic viscosity of the melt

ρ :

density

ω :

rotational velocity

Δρ :

density difference

I :

interface

L :

liquid

P :

particle

S :

solid

ref:

reference

rel:

relative

t :

at the tip of interface perturbation

References

  1. S.N. Omenyi and A.W. Neumann: J. Appl. Phys., 1976, vol. 47 (9), pp. 3956–62.

    Article  ADS  CAS  Google Scholar 

  2. H. Shibata, H. Yin, S. Yoshinaga, T. Emi, and M. Suzuki: Iron Steel Inst. Jpn. Int., 1998, vol. 38, p. 149.

    CAS  Google Scholar 

  3. F.R. Juretzko, B.K. Dhindaw, D.M. Stefanescu, S. Sen, and P.A. Curreri: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1691–96.

    Article  CAS  Google Scholar 

  4. G. Muller, G. Neumann, and W. Weber: J. Cryst. Growth, 1984, vol. 70, p. 78.

    Article  Google Scholar 

  5. Q. Han and J.D. Hunt: Mater. Sci. Eng., 1993, vol. A173, pp. 221–25.

    CAS  Google Scholar 

  6. S. Sen, B.K. Dhindaw, D.M. Stefanescu, A. Catalina, and P.A. Curreri: J. Cryst. Growth, 1997, vol. 173, pp. 574–84.

    Article  CAS  Google Scholar 

  7. L. Hadji: Phys. Rev. E, 1999, vol. 60, p. 6180.

    Article  ADS  CAS  Google Scholar 

  8. A.A. Chernov, D.E. Temkin, and A.M. Mel’nikova: Sov. Phys. Crystallogr., 1976, vol. 21 (4), pp. 369–73.

    Google Scholar 

  9. G.F. Bolling and J.A. Cissé: J. Cryst. Growth, 1971, vol. 10, pp. 56–66.

    Article  CAS  Google Scholar 

  10. J. Pötschke and V. Rogge: J. Cryst. Growth, 1989, vol. 94, pp. 726–38.

    Article  Google Scholar 

  11. D.K. Shangguan, S. Ahuja, and D.M. Stefanescu: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 669–78.

    CAS  Google Scholar 

  12. A.V. Catalina, S. Mukherjee, and D.M. Stefanescu: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2559–68

    Article  CAS  Google Scholar 

  13. P.G. Saffman: J. Fluid Mech., 1965, vol. 22, pp. 385–400.

    Article  MATH  ADS  Google Scholar 

  14. S.I. Rubinow and J.B. Keller: J. Fluid Mech., 1961, vol. 11, pp. 447–59.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. P. Cherukat and J.B. McLaughlin: J. Fluid Mech., 1994, vol. 263, pp. 1–18.

    Article  MATH  ADS  CAS  Google Scholar 

  16. R. Kurose and S. Komori: J. Fluid Mech., 1999, vol. 384, pp. 183–206.

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  17. D.S. Dandy and H.A. Dwyer: J. Fluid Mech., 1990, vol. 216, pp. 381–410.

    Article  ADS  Google Scholar 

  18. Q. Han and J.D. Hunt: J. Cryst. Growth, 1995, vol. 152, pp. 221–27.

    Article  CAS  Google Scholar 

  19. D.M. Stefanescu, F.R. Juretzko, B.K. Dhindaw, A.V. Catalina, S. Sen, and P.A. Curreri: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1697–706.

    Article  CAS  Google Scholar 

  20. G. Kaptay: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 993–1005.

    CAS  Google Scholar 

  21. A.V. Catalina: Ph.D. Dissertation, University of Alabama, Tuscaloosa, AL, 2000.

    Google Scholar 

  22. Y. Tsuji, Y. Morikawa, and O. Mizuno: J. Fluids Eng., 1985, vol. 107, pp. 484–88.

    Article  Google Scholar 

  23. R.A. Brown: in Materials Science in Space, B. Feuerbacher, H. Hamacher, and R.J. Naumann, eds., Springer-Verlag, New York, NY, 1986, p. 55.

    Google Scholar 

  24. A.V. Bune, S. Sen, S. Mukherjee, A. Catalina, and D.M. Stefanescu: J. Cryst. Growth, 2000, vol. 211, pp. 446–51.

    Article  CAS  Google Scholar 

  25. A.V. Catalina and D.M. Stefanescu: in Solidification, W.H. Hofmeister et al., eds., Warrendale, PA: TMS, 1999, pp. 273–282.

    Google Scholar 

  26. C. Schvezov: in Solidification, W.H. Hofmeister et al., eds., TMS, Warrendale, PA, 1999, pp. 251–61.

    Google Scholar 

  27. D.M. Stefanescu, S. Sen, A.V. Catalina, and P.A.Curreri: “Particle Engulfment and Pushing by Solidifying Interfaces,” NASA Science Requirements Document No. NAS8-39715, NASA, 2000.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Stefanescu, D.M. Liquid convection effects on the pushing-engulfment transition of insoluble particles by a solidifying interface: Part I. Analytical calculation of the lift forces. Metall Mater Trans A 35, 613–621 (2004). https://doi.org/10.1007/s11661-004-0373-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0373-4

Keywords

Navigation