Abstract
During the solidification of a liquid containing insoluble particles, the particles can be instantaneously engulfed, or continuously pushed, or pushed and subsequently engulfed. A critical velocity for the pushingengulfment transition is observed experimentally. Most models proposed to date ignore the complications arising from the liquid convection ahead of the solidliquid interface. They simply solve the balance between the attractive drag force exercised by the liquid on the particle and the repulsive interfacial force. This work is an effort to calculate analytically the lift forces (Saffman and Magnus forces) under certain assumptions regarding the nature of fluid flow ahead of the solid/liquid interface. This makes possible the quantitative evaluation of the three experimentally observed regimes occurring during particleinterface interaction: (1) at low convection—no effect on the critical velocity for the particle engulfment transition; (2) at intermediate convection—increased critical velocity; (3) at high convection—no particleinterface interaction.
The model was applied to evaluate the gravity level required for microgravity experimental work on particle pushing where the effect of liquid convection during solidification is negligible. This is necessary to validate existing theoretical models that do not take into account fluid flow parallel to the solidification interface.
Similar content being viewed by others
Abbreviations
 C _{ A } :

coefficient for the virtual added mass force
 F _{ D } :

drag force
 F _{ g } :

gravity force
 F _{ I } :

pushing force due to surface energy interactions
 F _{ M } :

Magnus force
 F _{ S } :

Saffman force
 F _{ VM } :

force to accelerate virtual added mass of the particle
 L :

distance between the center of the particle and the unperturbed solid/liquid interface, characteristic length
 L*:

nondimensional distance between the center of the particle and the unperturbed solid/liquid interface
 L _{ ref } :

reference length
 RI _{ t } :

position of the tip of the SL interface
 RI _{ t }*:

position of the tip of the SL interface in nondimensional form
 R _{ P } :

radius of the particle
 Re:

flow Reynolds number
 V _{ 0 } :

farfield convection velocity
 V _{ 100 } :

convection velocity at 100 µm from the interface
 V _{ Lx } :

liquid velocity in the x direction
 V _{ P } :

particle velocity
 V _{ ref } :

reference velocity
 V _{ rel } :

velocity of the particle relative to the liquid
 V _{ SL } :

solidification velocity
 We:

Weber number
 a _{ 0 } :

atomic diameter
 d :

distance between the particle and the solid/liquid interface
 g :

gravitational acceleration
 k _{ L } :

thermal conductivity of liquid
 k _{ P } :

thermal conductivity of particle
 k*:

ratio of k _{ P } by k _{ L }
 m _{ P } :

mass of the particle
 t :

time
 t _{ ref } :

reference time
 x, y, z :

coordinate axes
 α :

switching variable, angle between the gravity vector and SL interface
 β :

switching variable
 Δγ _{ 0 } :

surface energy difference
 δ :

boundary layer width
 η :

dynamic viscosity of the melt
 v :

kinematic viscosity of the melt
 ρ :

density
 ω :

rotational velocity
 Δρ :

density difference
 I :

interface
 L :

liquid
 P :

particle
 S :

solid
 ref:

reference
 rel:

relative
 t :

at the tip of interface perturbation
References
S.N. Omenyi and A.W. Neumann: J. Appl. Phys., 1976, vol. 47 (9), pp. 3956–62.
H. Shibata, H. Yin, S. Yoshinaga, T. Emi, and M. Suzuki: Iron Steel Inst. Jpn. Int., 1998, vol. 38, p. 149.
F.R. Juretzko, B.K. Dhindaw, D.M. Stefanescu, S. Sen, and P.A. Curreri: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1691–96.
G. Muller, G. Neumann, and W. Weber: J. Cryst. Growth, 1984, vol. 70, p. 78.
Q. Han and J.D. Hunt: Mater. Sci. Eng., 1993, vol. A173, pp. 221–25.
S. Sen, B.K. Dhindaw, D.M. Stefanescu, A. Catalina, and P.A. Curreri: J. Cryst. Growth, 1997, vol. 173, pp. 574–84.
L. Hadji: Phys. Rev. E, 1999, vol. 60, p. 6180.
A.A. Chernov, D.E. Temkin, and A.M. Mel’nikova: Sov. Phys. Crystallogr., 1976, vol. 21 (4), pp. 369–73.
G.F. Bolling and J.A. Cissé: J. Cryst. Growth, 1971, vol. 10, pp. 56–66.
J. Pötschke and V. Rogge: J. Cryst. Growth, 1989, vol. 94, pp. 726–38.
D.K. Shangguan, S. Ahuja, and D.M. Stefanescu: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 669–78.
A.V. Catalina, S. Mukherjee, and D.M. Stefanescu: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2559–68
P.G. Saffman: J. Fluid Mech., 1965, vol. 22, pp. 385–400.
S.I. Rubinow and J.B. Keller: J. Fluid Mech., 1961, vol. 11, pp. 447–59.
P. Cherukat and J.B. McLaughlin: J. Fluid Mech., 1994, vol. 263, pp. 1–18.
R. Kurose and S. Komori: J. Fluid Mech., 1999, vol. 384, pp. 183–206.
D.S. Dandy and H.A. Dwyer: J. Fluid Mech., 1990, vol. 216, pp. 381–410.
Q. Han and J.D. Hunt: J. Cryst. Growth, 1995, vol. 152, pp. 221–27.
D.M. Stefanescu, F.R. Juretzko, B.K. Dhindaw, A.V. Catalina, S. Sen, and P.A. Curreri: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1697–706.
G. Kaptay: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 993–1005.
A.V. Catalina: Ph.D. Dissertation, University of Alabama, Tuscaloosa, AL, 2000.
Y. Tsuji, Y. Morikawa, and O. Mizuno: J. Fluids Eng., 1985, vol. 107, pp. 484–88.
R.A. Brown: in Materials Science in Space, B. Feuerbacher, H. Hamacher, and R.J. Naumann, eds., SpringerVerlag, New York, NY, 1986, p. 55.
A.V. Bune, S. Sen, S. Mukherjee, A. Catalina, and D.M. Stefanescu: J. Cryst. Growth, 2000, vol. 211, pp. 446–51.
A.V. Catalina and D.M. Stefanescu: in Solidification, W.H. Hofmeister et al., eds., Warrendale, PA: TMS, 1999, pp. 273–282.
C. Schvezov: in Solidification, W.H. Hofmeister et al., eds., TMS, Warrendale, PA, 1999, pp. 251–61.
D.M. Stefanescu, S. Sen, A.V. Catalina, and P.A.Curreri: “Particle Engulfment and Pushing by Solidifying Interfaces,” NASA Science Requirements Document No. NAS839715, NASA, 2000.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mukherjee, S., Stefanescu, D.M. Liquid convection effects on the pushingengulfment transition of insoluble particles by a solidifying interface: Part I. Analytical calculation of the lift forces. Metall Mater Trans A 35, 613–621 (2004). https://doi.org/10.1007/s1166100403734
Received:
Issue Date:
DOI: https://doi.org/10.1007/s1166100403734