Skip to main content
Log in

Synthesis of nanocrystalline Zn-22 Pct Al using cryomilling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present investigation, the synthesis of nanocrystalline Zn-22 pct Al by ball milling was studied. The microstructural evolution during cryomilling and subsequent annealing was characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Observations made during the cryomilling of the alloy reveal three findings. First, minimum average grain sizes of about 33 nm for the Al phase and 41 nm for the Zn phase are reached as cryomilling time increases to 16 hours. Second, the morphology of the powders changes from spherical (as-sprayed) to flaky (milled 8 hours) and then back to spherical again (milled 16 hours). Third, the microstructure transforms from two-phase coarse structure (0.8 µm, as-sprayed) to bimodal structure (milled 8 hours) and then to a uniform fine-grained structure (milled 16 hours). The minimum grain size characterized by the peak broadening of the XRD patterns is much larger than that reported in previous work on Al and Zn but agrees well with those predicted from the approximate linear relationship between the minimum grain size and the critical equilibrium distance between two edge dislocations in a pileup. The mechanism of grain size refinement is discussed at three different levels: macroscopic level (individual powders), mesoscopic level (individual small fragments), and microscopic level (individual grains). The excellent thermal stability of the milled powders during subsequent annealing has been attributed to three factors: the nature of the eutectoid structure, grain-boundary pining by dispersions, and microporosity in the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  2. C. Suryanarayana: Int. Mater. Rev., 1995, vol. 40, pp. 41–64.

    CAS  Google Scholar 

  3. R. Birringer, H. Gleiter, H.P. Klein, and P. Marquardt: Phys. Lett., 1984, vol. A102, pp. 356–60.

    Google Scholar 

  4. C.C. Koch: Nano-struct. Mater., 1993, vol. 2, pp. 109–29.

    Article  CAS  Google Scholar 

  5. A. Inoue: Mater. Sci. Eng., A, 1994, vols. 179–180, pp. 57–61.

    Google Scholar 

  6. G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong: Scripta Metall., 1986, vol. 20, pp. 93–97.

    Article  CAS  Google Scholar 

  7. Z.G. Li and D.J. Smith: Appl. Phys. Lett., 1989, vol. 55, pp. 919–23.

    Article  ADS  CAS  Google Scholar 

  8. K. Lu and J.T. Wang: J. Appl. Phys., 1991, vol. 69, pp. 522–31.

    Article  ADS  CAS  Google Scholar 

  9. M.L. Mandich, V.E. Bondybey, and W.D. Reents: J. Chem. Phys., 1987, vol. 86, pp. 4245–55.

    Article  ADS  CAS  Google Scholar 

  10. V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, and V.I. Kopylov: Metally., 1981, vol. 1, pp. 115–23 (English translation); and Russ. Metall., 1981, vol. 1, pp. 99–105 (English translation).

    Google Scholar 

  11. R.Z. Valiev, R.S. Musalimov, and N.K. Tsenev: Phys. Status Solidi (a), 1989, vol. 115, pp. 451–57.

    Article  CAS  Google Scholar 

  12. H.J. Fecht: in Nanophase Materials, G.C. Hadjipanayis and R.W. Siegel, eds., Kluwer Academic Publishers, London, 1994, pp. 125–36.

    Google Scholar 

  13. H.J. Fecht: Nano-struct. Mater., 1995, vol. 6, pp. 33–42.

    Article  CAS  Google Scholar 

  14. P.S. Gilman and J.S. Benjamin: Ann. Rev. Mater. Sci., 1983, vol. 13, pp. 279–300.

    Article  CAS  Google Scholar 

  15. E. Hellstern, H.J. Fecht, C. Garland, and W.L. Johnson: J. Appl. Phys., 1989, vol. 65, pp. 305–16.

    Article  ADS  CAS  Google Scholar 

  16. J. Eckert, J.C. Holzer, C.E. Kill, III, and W.L. Johnson: J. Mater. Res., 1992, vol. 7, pp. 1751–61.

    ADS  CAS  Google Scholar 

  17. F.A. Mohamed and Y. Xun: Mater. Sci. Eng., 2003, vol. A354, pp. 133–39.

    CAS  Google Scholar 

  18. J.H. He and E.J. Lavernia: J. Mater. Res., 2001, vol. 16 (9), pp. 1–12.

    Google Scholar 

  19. H.G. Jiang, H.M. Hu, and E.J. Lavernia: J. Mater. Res., 1999, vol. 14, pp. 1760–70.

    ADS  CAS  Google Scholar 

  20. R.W. Hayes, R. Rodriguez, and E.J. Lavernia: Acta Mater., 2001, vol. 49, pp. 4055–68.

    Article  CAS  Google Scholar 

  21. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 938–44.

    ADS  CAS  Google Scholar 

  22. R.J. Perez, H.G. Jiang, C.P. Dogan, and E.J. Lavernia: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2469–75.

    Article  CAS  Google Scholar 

  23. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Co., Inc., Reading, MA, 1978.

    Google Scholar 

  24. X. Zhang, H. Wang, J. Narayan, and C.C. Koch: Acta Mater., 2001, vol. 49, pp. 1319–26.

    Article  CAS  Google Scholar 

  25. X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhou, and E.J. Lavernia: in Ultrafine Grained Materials II, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., TMS, Warrendale, PA, 2002, pp. 323–30.

    Google Scholar 

  26. T.D. Shen and C.C. Koch: Acta Mater., 1996, vol. 44, pp. 753–61.

    Article  CAS  Google Scholar 

  27. F. Cardellini, V. Contini, G. Mazzone, and A. Montone: Phil. Mag. B, 1997, vol. 76, pp. 629–40.

    CAS  Google Scholar 

  28. T.R. Malow and C.C. Koch: Acta Mater., 1997, vol. 45, pp. 2177–86.

    Article  CAS  Google Scholar 

  29. H.G. Jiang, M.L. Lau, and E.J. Lavernia: Nano-struct. Mater., 1998, vol. 10, pp. 169–78.

    Article  CAS  Google Scholar 

  30. Y. Li, S.R. Nutt, and F.A. Mohamed: Acta Mater., 1997, vol. 45, pp. 2607–20.

    Article  CAS  Google Scholar 

  31. F.A. Mohamed: Mater. Sci. Eng., 1998, vol. A245, pp. 242–56.

    CAS  Google Scholar 

  32. F.A. Mohamed, K.T. Park, and E.J. Lavernia: Mater. Sci. Eng., 1992, vol. A150, pp. 21–35.

    CAS  Google Scholar 

  33. K.T. Park and F.A. Mohamed: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3119–29.

    CAS  Google Scholar 

  34. E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, Butterworth-Heinemann Ltd., Oxford, United Kingdom, 1992, vol. 8, p. 23.

    Google Scholar 

  35. E. Hellstern, H.J. Fecht, C. Garland, and W.L. Johnson: Mater. Res. Soc. Symp. Proc., 1989, vol. 132, pp. 137–48.

    Google Scholar 

  36. E. Gaffet and M. Harmelin: J. Less. Comm. Met., 1990, vol. 157, pp. 201–22.

    Article  CAS  Google Scholar 

  37. T.D. Shen, C.C. Koch, T.L. MaCormick, R.J. Nemanich, J.Y. Huang, and J.G. Huang: J. Mater. Res., 1995, vol. 10, pp. 139–48.

    ADS  CAS  Google Scholar 

  38. T.D. Shen, W.D. Ge, K.Y. Wang, M.X. Quan, J.T. Wang, W.D. Wei, and C.C. Koch: Nano-struct. Mater., 1996, vol. 7, pp. 393–99.

    Article  CAS  Google Scholar 

  39. D. Oleszak and P.H. Shingu: J. Appl. Phys., 1996, vol. 79, pp. 2975–80.

    Article  ADS  CAS  Google Scholar 

  40. F. Zhou, D. Witkin, S.R. Nutt, and E.J. Lavernia: Mater. Sci. Eng., in press.

  41. ASM Handbook, vol. 3, Alloy Phase Diagrams, ASM, Materials Park, OH, 1992, p. 56.

  42. F.A. Mohamed: Mater. Sci Eng., 1983, vol. 61, pp. 1490–65.

    Google Scholar 

  43. C.J. Smithells: Smithells Metals Reference Book, 6th ed., E.A. Brandes, ed., Butterworth and Co., London, 1993, Sect. 13.

    Google Scholar 

  44. A.S. Malin, M. Hatherly and V. Piegerova: in Strength of Metals and Alloys (ICSMA 6), Proc. 6th Int. Conf., R.C. Gifkins, ed., Pergamon Press, Oxford, United Kingdom, 1982, vol. 1, pp. 523–34.

    Google Scholar 

  45. T.G. Nieh and M.J. Wadsworth: Scripta Metall. Mater., 1991, vol. 25, pp. 955–58.

    Article  CAS  Google Scholar 

  46. J.R. Weertman and R.S. Averback: in Nc-Materials: Synthesis, Properties and Applications, A.S. Edelstein and R.C. Cammarata, eds., Institute of Metals Publishing, London, 1996, pp. 323–44.

    Google Scholar 

  47. J.S. Benjamin: Metall. Trans., 1970, vol. 1, pp. 2943–54.

    CAS  Google Scholar 

  48. J.S. Benjamin: Mater. Sci. Forum, 1992, vols. 88–90, pp. 1–9.

    Article  Google Scholar 

  49. T. Tanaka and M. Kosugi: in Basic Questions in Fatigue, ASTM STP 924, J.T. Fong and R.J. Fields, eds., ASTM, Philadelphia, PA, 1988, vol. 1, pp. 98–106.

    Google Scholar 

  50. P. Knauth, A. Charai, and P. Gas: Scripta Metall. Mater, 1993, vol. 28, pp. 325–30.

    Article  CAS  Google Scholar 

  51. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K.T. Aust: Scripta Metall. Mater., 1991, vol. 25, pp. 2711–16.

    Article  CAS  Google Scholar 

  52. J. Rawers, G. Slavens, D. Govier, C. Dogan, and R. Doan: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3126–34.

    CAS  Google Scholar 

  53. T.G. Nieh, J. Wadsworth, and O.D. Sherby: Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, United Kingdom, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xun, Y., Mohamed, F.A. & Lavernia, E.J. Synthesis of nanocrystalline Zn-22 Pct Al using cryomilling. Metall Mater Trans A 35, 573–581 (2004). https://doi.org/10.1007/s11661-004-0368-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0368-1

Keywords

Navigation