Skip to main content
Log in

Mechanisms of strain accumulation and damage development during creep of prestrained 316 stainless steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of prestraining at room temperature and at the creep temperature of 848 K, as well as the responses to stress reductions during creep, have been studied for 316 stainless steels varying in composition and initial microstructure. The results are analyzed by contrasting the strengthening effects achieved by introducing high dislocation densities prior to creep exposure with the deleterious effects, which can occur when prestraining causes premature void nucleation at grain boundaries. In addition, by recognizing the differing contributions made by the grain interiors and the grain boundary zones to the overall rates of creep strain accumulation, a consistent explanation is provided for the diverse creep behavior patterns reported for different metals and alloys after various prestraining treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.K. Sikka, R.W. Swindeman, T.L. Hebble, C.R. Brinkman, and M.K. Booker: Nucl. Technol., 1976, vol. 31, pp. 96–114.

    CAS  Google Scholar 

  2. M. Willis, A. McDonaugh-Smith, and R. Hales: Int. J. Pressure Vessels Piping, 1999, vol. 76, pp. 355–59.

    Article  CAS  Google Scholar 

  3. P.W. Davies, J.D. Richards, and B. Wilshire: J. Inst. Met., 1961–62, vol. 90, pp. 431–33.

    Google Scholar 

  4. J.D. Parker and B. Wilshire: Mater. Sci. Eng., 1980, vol. 43, pp. 271–80.

    Article  CAS  Google Scholar 

  5. W. Barr, B. Plastow, and W.E. Winnett: Metallurgica, 1967, vol. 75, pp. 9–14.

    CAS  Google Scholar 

  6. S. Kibuchi and B. Ilschner: Sci. Metall., 1986, vol. 20, pp. 159–62.

    Article  Google Scholar 

  7. D.J. Powell, R. Pilkington, and D.A. Miller: Proc. 2nd Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, 1984, vol. 2, pp. 989–1002.

    Google Scholar 

  8. B.F. Dyson and M.J. Rogers: Met. Sci., 1974, vol. 8, pp. 261–66.

    CAS  Google Scholar 

  9. T. Saegusa, M. Vemura, and J.R. Weertman: Metall. Trans. A, 1980, vol. 11A, pp. 1453–58.

    CAS  Google Scholar 

  10. H. Burt, I.C. Elliott, and B. Wilshire: Met. Sci., 1981, vol. 15, pp. 421–24.

    CAS  Google Scholar 

  11. M.C. Pandey, A.K. Mukherjee, and D.M.R. Taplin: Metall. Trans. A, 1984, vol. 15A, pp. 1437–41.

    CAS  Google Scholar 

  12. Y.-H. Zhang and D.M. Knowles: Proc. 10th Int. Conf. on Fracture, K. Ravi-Chandra, B.L. Karihaloo, T. Kishi, R.O. Richie, and A.T. Yokobori, Jr., eds., Elsevier, Oxford, United Kingdom, 2001, p. 6.

    Google Scholar 

  13. R.H. Norton: The Creep of Steel at High Temperature, McGraw-Hill, New York, NY, 1929.

    Google Scholar 

  14. R.C. Monkman and N.J. Grant: Proc. ASTM, 1956, vol. 56, pp. 593–605.

    Google Scholar 

  15. F. Dobes and K. Milicka: Met. Sci., 1976, vol. 10, pp. 382–86.

    CAS  Google Scholar 

  16. B. Wilshire and F. Carreño: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 463–72.

    Article  CAS  Google Scholar 

  17. B. Wilshire and H. Burt: Proc. 9th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, J.D. Parker, ed., Institute of Materials, London, 2001, pp. 261–68.

    Google Scholar 

  18. F.A. Leckie and D.R. Hayhurst: Acta Metall., 1977, vol. 25, pp. 1059–70.

    Article  Google Scholar 

  19. M.F. Ashby and B.F. Dyson: Advances in Fracture Research, S.R. Valluri, ed., Pergamon Press, Oxford, United Kingdom, 1984, vol. 1, pp. 3–30.

    Google Scholar 

  20. C.N. Ahlquist and W.D. Nix: Acta. Metall., 1971, vol. 19, pp. 373–85.

    Article  Google Scholar 

  21. J.C. Gibeling and W.D. Nix: Met. Sci. J., 1977, vol. 11, pp. 453–57.

    CAS  Google Scholar 

  22. R.W. Evans and B. Wilshire: Creep of Metal and Alloys, The Institute of Metals, London, 1985.

    Google Scholar 

  23. R.C. Gifkins: Metall. Trans. A, 1976, vol. 7A, pp. 1225–34.

    CAS  Google Scholar 

  24. R.A. Ainsworth: An Assessment Procedure for the High Temperature Response of Structures R5, Issue 2, Nuclear Electric Ltd., Berkeley, UK, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilshire, B., Willis, M. Mechanisms of strain accumulation and damage development during creep of prestrained 316 stainless steels. Metall Mater Trans A 35, 563–571 (2004). https://doi.org/10.1007/s11661-004-0367-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0367-2

Keywords

Navigation