Skip to main content
Log in

Damage repair in CMSX-4 alloy without fatigue life reduction penalty

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural changes in a single-crystal Ni-base superalloy, CMSX-4, that might occur during the processes of repair and recoating of hot section components for advanced gas turbines were studied. It is shown that the cellular γ/γ′ microstructure is formed when the material is subjected to local plastic straining, followed by the reheat treatments during the course of damage recovery. The formation of cellular microstructure in the material led to the remarkably reduced fatigue strength. In order to reduce or prevent the preceding undesirable effect resulting from cellular microstructure, a new method based on applying overlay coating technique was developed. The method is based on an idea that the alloying elements that are depleted in base alloys could be supplemented via the overlay coating. An X alloy, which contains grain boundary strengthening elements, was selected and coated on the CMSX-4 with the cellular microstructure by low-pressure plasma spraying. The fatigue tests on the coated CMSX-4 specimens demonstrated the effectiveness of the method. The observations of the crack initiation site, the fatigue fracture mode, the crack density in the cellular transformed area, and the crack propagation morphologies near the prior interface strongly supported the validity of this approach. The method is expected to build a road to a so-called damage cure (or recovery) coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.B. Seth: Superalloys 2000, T. Pollock, ed., TMS, Warrendale, PA, 2000, pp. 3–13.

    Google Scholar 

  2. J. Stinger and R. Viswanathan: Proc. ASM 1993 Materials Week ’93, ASM, Materials Park, OH, 1993, pp. 1–10.

    Google Scholar 

  3. R. Curtis: ASME Paper GT-2001, ASME, New York, 2001, paper no. 569.

    Google Scholar 

  4. W.M. Miglietti: ASME paper GT-2001, ASME, 2001, paper no. 501.

  5. S.D. Bond and J.W. Martin: J. Mater. Sci., 1984, vol. 19, pp. 3867–72.

    Article  CAS  Google Scholar 

  6. A. Porter and B. Ralph: J. Mater. Sci., 1981, vol. 16, pp. 707–13.

    Article  CAS  Google Scholar 

  7. P. Portella: in Microstructure and Mechanical Properties of Metallic High Temperature Materials, H. Mughrabi, ed., DFG, Berlin, 1999, pp. 441–53.

    Google Scholar 

  8. W.S. Walston, J.C. Schaeffer, and W.H. Murphy: Superalloys ’96, 1996, pp. 9–18.

  9. M. Okazaki, T. Hiura, and T. Suzuki: in Superalloys 2000, T. Pollock, ed., 2000, pp. 505–14.

  10. M. Okazaki, R. Takaku, K. Namba, and Y. Harada: Soc. Mater. Sci., Jpn., 2002, vol. 51, pp. 611–17 (in Japanese).

    Google Scholar 

  11. M. Okazaki, T. Hiura, and T. Suzuki: Mater. Sci. Res. Int., 2003, vol. 9, pp. 55–60.

    Google Scholar 

  12. M. Okazaki, I. Ohtera, and Y. Harada: Soc. Mater. Sci., Jpn., 2003, vol. 52, pp. 146–53 (in Japanese).

    CAS  Google Scholar 

  13. For example, F.R.N. Nabarro: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 513–23.

    CAS  Google Scholar 

  14. U. Krupp and H.J. Christ: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 47–56.

    Article  CAS  Google Scholar 

  15. For example, D. Broek: Elementary Engineering Fracture Mechanics, Noordhoff Int. Pub., Leyden, The Netherlands, 1974, ch. 3.

    Google Scholar 

  16. C. Liu, C.L. White, and J. Horton: Acta Metall., 1985, vol. 33, p. 213.

    Article  CAS  Google Scholar 

  17. K. Schneider and H.W. Gruling: Thin Solid Films, 1981, vol. 84, pp. 29–36.

    Article  CAS  Google Scholar 

  18. A. Strang and E. Lang: in High Temperature Alloys for Gas Turbines, R. Brunetaud, ed., Riedel Publishing Co., Liege, 1982, pp. 469–506.

    Google Scholar 

  19. M. Okazaki, H. Yamada, and S. Nohmi: Metall. Mater. Trans. A, 1996, vol. 26A, pp. 1021–33.

    Google Scholar 

  20. M.Y. He and J.W. Hutchinson: Int. J. Solids Struct., 1989, vol. 25, pp. 1053–66.

    Article  Google Scholar 

  21. K. Aoki and O. Izumi: Nippon Kinzoku Gakkai-shi, 1979, vol. 43, pp. 1190–97 (in Japanese).

    CAS  Google Scholar 

  22. E.M. Schulson, T.P. Weibs, and I. Baker: Acta Metall., 1986, vol. 34, pp. 1395–1404.

    Article  CAS  Google Scholar 

  23. D.A. Muller, S. Subramanian, P.E. Boston, and S.L. Sass: Acta Metall., 1996, vol. 44, pp. 1637–45.

    CAS  Google Scholar 

  24. R.P. Messer and C.L. Briant: Acta Metall., 1982, vol. 30, pp. 457–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okazaki, M., Ohtera, I. & Harada, Y. Damage repair in CMSX-4 alloy without fatigue life reduction penalty. Metall Mater Trans A 35, 535–542 (2004). https://doi.org/10.1007/s11661-004-0364-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0364-5

Keywords

Navigation