Skip to main content
Log in

Dynamic phase transformation during superplastic deformation of Nb/Nb3Al in-situ composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nbss/Nb3Al in-situ composite with the nominal composition of Nb-16 mol pct Al-1 mol pct B, consisting of bcc niobium solid solution (Nbss) and A15 ordered Nb3Al, was synthesized by arc melting, homogenization annealing, and isothermal forging, and their superplastic deformation behavior was investigated by tensile tests and microstructure observations. Maximum superplastic elongation over 750 pct was obtained at 1573 K and at a strain rate of 1.6 × 10−4 s−1 for as-forged specimens. Phase transformation from Nbss to Nb3Al was observed to occur during superplastic deformation. Dynamic phase transformation during superplastic deformation progresses more quickly than static phase transformation during annealing without applied stress. Dynamic phase transformation is accompanied by phase-boundary migration, which operates as an accommodation process of grain-boundary sliding. Dislocation creep dominates deformation and grain-boundary sliding is inhibited at a high strain rate, while grain-boundary sliding and cavity formation are promoted at a low strain rate because of insufficient accommodation of grain-boundary sliding arising from sluggish dynamic phase transformation. It is concluded that there exists an optimum strain rate that guarantees the grain-boundary sliding and the rapid dynamic phase transformation to achieve maximum superplastic elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Jackson and K.D. Jones: in Refractory Metals: Extraction, Processing and Applications, K.C. Liddell, D.R. Sadoway, and R.G. Bautista, eds., TMS, Warrendale, PA, 1991, pp. 311–20.

    Google Scholar 

  2. D.L. Davidson, K.S. Chan, and D.L. Anton: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3007–18.

    CAS  Google Scholar 

  3. M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1573–83.

    CAS  Google Scholar 

  4. M.G. Mendiratta and D.M. Dimiduk: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 501–04.

    CAS  Google Scholar 

  5. D.M. Shah and D.L. Anton: in Intermetallic Matrix Composites II, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., MRS, Pittsburgh, PA, 1992, vol. 273, pp. 385–97.

    Google Scholar 

  6. Y. Murayama and S. Hanada: J. Jpn. Inst. Met., 1999, vol. 63, pp. 1519–26.

    CAS  Google Scholar 

  7. Y. Murayama, S. Hanada, and K. Obara: Mater. Trans., JIM, 1996, vol. 37, pp. 1388–96.

    CAS  Google Scholar 

  8. N. Ridley, M.F. Islam, and J. Pilling: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 63–68.

    Google Scholar 

  9. W.B. Lee, H.S. Yang, Y.-W. Kim, and A.K. Muhkerjee: Scripta Metall. Mater., 1993, vol. 29, pp. 1403–08.

    Article  CAS  Google Scholar 

  10. S. Hanada and W. Fang: Mater. Res. Soc. Symp. Proc., P.B. Berbon, M.Z. Berbon, T. Sakuma, and T.G. Langdon, eds., MRS, Pittsburgh, PA, 2000, vol. 601, pp. 15–24.

    Google Scholar 

  11. J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, and K. Maruyama: Acta Mater., 2000, vol. 48, pp. 2059–69.

    Article  CAS  Google Scholar 

  12. H.S. Yang, G. Gurewitz, and A.K. Mukherjee: Mater. Trans. JIM, 1991, vol. 32, pp. 465–72.

    CAS  Google Scholar 

  13. H.S. Yang, P. Jin, and A.K. Mukherjee: Mater. Sci. Eng., 1992, vol. A153, pp. 457–64.

    CAS  Google Scholar 

  14. H.C. Fu, J.C. Huang, T.D. Wang, and C.C. Bampton: Acta Mater., 1998, vol. 46, pp. 465–79.

    Article  CAS  Google Scholar 

  15. M. Tuffs and C. Hammond: in Superplasticity: 60 Years after Pearson, Norman Ridley, ed., Institute of Materials, London, 1995, pp. 161–72.

    Google Scholar 

  16. T.G. Nieh and J. Wadsworth: J. Chin. Inst, Eng., 1998, vol. 21, pp. 659–89.

    Google Scholar 

  17. T. Murakami, C.N. Xu, A. Kitahara, M. Kawahara, Y. Takahashi, H. Inui, and M. Yamaguchi: Intermetallics, 1999, vol. 7, pp. 1043–48.

    Article  CAS  Google Scholar 

  18. Binary Ordered Phase Diagram, T.B. Massalski, ed., ASM, Metals Park, OH, 1987, vol. 1, pp. 139–40.

    Google Scholar 

  19. Ternary Alloys, G. Petzow and G. Effenberg, eds., VCH Verlagsgesellshaft, Weinheim, Germany, 1990, vol. 3, pp. 194–97.

    Google Scholar 

  20. Oleg D. Sherby: Iron Steel Inst. Jpn. Int., 1989, vol. 29, pp. 698–716.

    CAS  Google Scholar 

  21. Oleg D. Sherby and Jeggery Wadsworth: in Deformation, Processing and Structure, G. Krauss, ed., ASM, Metals Park, OH, 1984, pp. 355–89.

    Google Scholar 

  22. G.I. Nikulaev and N.V. Bodrov: Z. Fiz. Khim, 1978, vol. 52, pp. 1430–33.

    Google Scholar 

  23. V.N. Agafomov, E.M. Sokolovskaya, V.I. Kulakov, and A.K. Gapeev: Vestn. Mosk. Univ. Khim., 1975, vol. 16, p. 121.

    Google Scholar 

  24. Metal Data Book, Japan Institute of Metals, Maruzen, Japan, 1993, p. 23.

  25. H. Fukuyo, H.C. Tsai, T. Oyama, and O.D. Sherby: Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 76–85.

    CAS  Google Scholar 

  26. J.H. Gittus: Trans. ASME-J. Eng. Mater. Technol., 1977, vol. 99, pp. 244–51.

    CAS  Google Scholar 

  27. R.C. Gifkins: Metall. Trans. A, 1976, vol. 7A, pp. 1225–32.

    CAS  Google Scholar 

  28. A.K. Mukherjee: Mater. Sci. Eng., 1971, vol. 8, pp. 83–89.

    Article  CAS  Google Scholar 

  29. C.D. Bencher, L. Murugesh, K.T.V. Rao, and R.O. Ritchie: Intermetallics, 1996, vol. 4, pp. 23–29.

    Article  CAS  Google Scholar 

  30. S.V. Sudareva, YE.P. Romarov, A.F. Prekul, and YE.N. Zhuravleva: Phys. Met. Metall., 1978, vol. 44, pp. 109–16.

    Google Scholar 

  31. E.S.K. Menon, P.R. Subramanian, and D.M. Dimiduk: Metal. Mater. Trans. A, 1996, vol. 27A, pp. 1647–59.

    CAS  Google Scholar 

  32. T. Fujiwara, T. Obana, and Hans-Heinrich Angermann: Proc. 7th Symp. on High-Performance Materials for Severe Environments, R&D Institute of Metals and Composites for Future Industries, Japan Industrial Technology Association, Tokyo, Japan, 1996, pp. 205–13.

    Google Scholar 

  33. Metal Data Book, Japan Institute of Metals, Maruzen, Japan, 1993, p. 33.

  34. O.N. Senkov and M.M. Myshlyyaev: Acta Metall., 1986, vol. 34, pp. 97–106.

    Article  CAS  Google Scholar 

  35. C. Schuh and D.C. Dunand: Acta Mater., 1998, vol. 46, pp. 5663–675.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murayama, Y., Wei, F. Dynamic phase transformation during superplastic deformation of Nb/Nb3Al in-situ composite. Metall Mater Trans A 35, 503–511 (2004). https://doi.org/10.1007/s11661-004-0361-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0361-8

Keywords

Navigation