Skip to main content
Log in

Microstructural effects on fatigue and dwell-fatigue crack growth in α/β Ti-6Al-2Sn-4Zr-2Mo-0.1Si

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article presents the results of an experimental and theoretical study of the effects of microstructure on room-temperature fatigue and dwell-fatigue crack growth in Ti-6242. The crack growth rates and micromechanisms of long crack growth are elucidated for equiaxed, elongated, and colony microstructures. The article shows that dwell and pure fatigue crack growth rates are generally similar in the long crack growth regime. The underlying mechanisms of long crack growth are also generally similar under pure fatigue and dwell-crack growth conditions. However, differences in dwell and fatigue sensitivities are observed between the different microstructure in the mid-and high-ΔK regimes. These are explained by considering the possible interactions between fatigue and creep during dwell fatigue loading at room temperature. Linearized fracture mechanics crack growth laws are presented for the modeling of crack growth in the near-threshold, Paris, and high-ΔK regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Eylon and J.A. Hall: Metall. Trans. A, 1977, vol. 8A, pp. 981–90.

    CAS  Google Scholar 

  2. W.J. Evans and C.R. Gostelow: Metall. Trans. A, 1979, vol. 10A, pp. 1837–46.

    CAS  Google Scholar 

  3. D.L. Davidson and D. Eylon: Metall. Trans. A, vol. 11A, 1980, pp. 837–43.

    CAS  Google Scholar 

  4. J.E. Hack and G.R. Leverant: Scripta Metall., 1980, vol. 14, pp. 437–41.

    Article  CAS  Google Scholar 

  5. J.E. Hack and G.R. Leverant: Metall. Trans. A, 1982, vol. 134, pp. 1729–38.

    Google Scholar 

  6. H.P. Chu, B.A. MacDonald, and O.P. Arora: Titanium Science and Technology, Munich, 1984, p. 2395.

  7. C.C. Wojcik, K.S. Chan, and D.A. Koss: Acta Metall., 1988, vol. 36 (5), pp. 1261–70.

    Article  CAS  Google Scholar 

  8. W.J. Evans and M.R. Bache: Fatigue, 1999, vol. 16, p. 443.

    Article  CAS  Google Scholar 

  9. M.R. Bache, H.M. Davies, and W.J. Evans: Titanium ’95: Science and Technology, The Institute of Materials, London, 1996, p. 1347.

    Google Scholar 

  10. S.H. Spence, W.H. Evans, and M. Cope: Advances in Fracture Research, Proc. 9th Int. Conf. on Fracture, Pergamon, Elmsford, NJ, 1997, p. 1571.

    Google Scholar 

  11. M.R. Bache, M. Cope, H.M. Davies, W.J. Evans, and G. Harrison: Int. J. Fatigue, 1997, vol. 19, pp. S1 and S83.

  12. K. Nikbin and J. Radon: Advances in Fracture Research, Proc. 9th Int. Conf. on Fracture, Pergamon, Elmsford, NJ, 1997, p. 423.

    Google Scholar 

  13. M.E. Kassner, Y. Kosaka, and J.A. Hall: Metall. Trans. A, 1999, vol. 30A, pp. 2383–89.

    CAS  Google Scholar 

  14. N. Paton: Proc. 5th Int. Conf. on Titanium, Deutsche Gesellschaft fur Metallkunde, Munich, 1984, pp. 2519–26.

    Google Scholar 

  15. A.N. Stroh: Proc. R. Soc. London, 1954, vol. 223, p. 404.

    Google Scholar 

  16. F.H. Froes, D. Eylon, and H.B. Bomberger: in Titanium Technology: Present Status and Future Trends, The Titanium Development Association, Boulder, CO, 1985.

    Google Scholar 

  17. G.R. Yoder and D. Eylon: Metall. Trans. A, 1979, vol. 10A, pp. 1808–10.

    CAS  Google Scholar 

  18. H. Margolin, J.C. Chesnutt, G. Luetjering, and J.C. Williams: Titanium ’80, Science and Technology, AIME, Warrendale, PA, 1980, p. 169.

    Google Scholar 

  19. J.C. Chesnutt, A.W. Thompson, and J.C. Williams: Titanium ’80, Science and Technology, AIME, Warrendale, PA, 1980, p. 1875.

    Google Scholar 

  20. P.E. Irving and C.J. Beevers: Mater. Sci. Eng., 1974, vol. 14, p. 229.

    Article  CAS  Google Scholar 

  21. G.T. Gray and G. Luetjering: Titanium Sci. Technol., 1985, vol. 4, p. 2251.

    CAS  Google Scholar 

  22. A.R. Rosenfield: Eng. Fract. Mech., 1977, vol. 9, p. 509.

    Article  CAS  Google Scholar 

  23. R.J.H. Wanhill: Aeronaut. J. R. Aeronaut. Soc., 1977, p. 68.

  24. M. Perters, A. Gysler, and G. Luetjering: Titanium ’80, Science and Technology, AIME, Warrendale, PA, 1980, p. 1777.

    Google Scholar 

  25. P.E. Irving and C.J. Beevers: Metall. Trans., 1974, vol. 5, pp. 391–98.

    CAS  Google Scholar 

  26. M.D. Halliday and C.J. Beevers: J. Testing Eval., 1981, vol. 9, p. 195.

    Article  CAS  Google Scholar 

  27. G.T. Gray III and G. Luetjering: Fatigue 84, EMAS, Warley, United Kingdom, 1984, p. 707.

    Google Scholar 

  28. G.R. Yoder, L.A. Cooley, and T.W. Crooker: Metall. Trans., 1977, vol. 8A, pp. 1737–43.

    CAS  Google Scholar 

  29. K.S. Ravichandran: Acta Metall., 1991, vol. 39, p. 401.

    Article  CAS  Google Scholar 

  30. S. Dubey, A.B.O. Soboyejo, and W.O. Soboyejo: Acta Mater., 1996, vol. 45, pp. 2777–87.

    Article  Google Scholar 

  31. S. Shademan, A.B.O. Soboyejo, and W.O. Soboyejo: Mater. Sci. Eng., 2001, vol. A315, pp. 1–10.

    CAS  Google Scholar 

  32. S. Suresh: Fatigue of Materials, Cambridge University Press, Cambridge, United Kingdom, 1991.

    Google Scholar 

  33. J.R. Rice: in Fatigue Crack Propagation, Special Technical Publication No. 415, ASTM, Philadelphia, PA, 1967, pp. 247–309.

    Google Scholar 

  34. G.R. Yoder, Y.A. Cooley, and T.W. Crooker: Eng. Fract. Mech., 1973, vol. 11, pp. 805–16.

    Article  Google Scholar 

  35. C. Mercer, A.B.O. Soboyejo, and W.O. Soboyejo: Mater. Sci. Eng., 1999, vol. A270, pp. 308–22.

    CAS  Google Scholar 

  36. A.B.O. Soboyejo, C. Mercer, and W.O. Soboyejo: in Engineering Against Fatigue, J.H. Beynon and R.A. Smith, Eds., A.A. Balkena, Rotterdam, 1998, pp. 253–59.

    Google Scholar 

  37. C. Laird: Fatigue Crack Propagation, Special Technical Publication No. 415, ASTM, Philadelphia, PA, 1967, pp. 131–68.

    Google Scholar 

  38. R.W. Lardner: Phil. Mag., 1967, vol. 17, pp. 71–82.

    Google Scholar 

  39. R.M.N. Pelloux: Eng. Fract. Mech., 1970, vol. 1, pp. 697–704.

    Article  Google Scholar 

  40. J.F. Knott: Fatigue Crack Growth: 30 Years of Progress, R.A. Smith, ed., Proc. Conf. on Fatigue Crack Growth, Cambridge, United Kingdom, 1994.

  41. K. Nikbin and J. Radon: Advances in Fracture Research, Proc. 9th Int. Conf. on Fracture, Pergamon, Elmsford, NJ, 1997, pp. 423–29.

    Google Scholar 

  42. M. Tabuchi, K. Kubo, and K. Yagi: Advances in Fracture Research, Proc. 9th Int. Conf. on Fracture, Pergamon, Elmsford, NJ, pp. 399–406, 1997.

    Google Scholar 

  43. F. Djavanroodi, K. Nikbin, and G.A. Webster: Material for Advanced Power Engineering, Part 1, 1994, pp. 561–72.

  44. A. Saxena: Advances in Fracture Research, Proc. 9th Int. Conf. on Fracture, Pergamon, Elmsford, NJ, 1997, pp. 51–62.

    Google Scholar 

  45. K. Nikbin, D.J. Smith, and G.A. Webster: Proc. R. Soc. London, 1984, A396, pp. 183–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, W., Soboyejo, W.O. & Soboyejo, A.B.O. Microstructural effects on fatigue and dwell-fatigue crack growth in α/β Ti-6Al-2Sn-4Zr-2Mo-0.1Si. Metall Mater Trans A 35, 163–187 (2004). https://doi.org/10.1007/s11661-004-0119-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0119-3

Keywords

Navigation