Skip to main content
Log in

Quench embrittlement of hardened 5160 steel as a function of austenitizing temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Charpy V-notch (CVN) specimens from experimental heats of 5160 steel containing 0.001 and 0.034 mass pct phosphorus were austenitized at temperatures between 830 °C and 1100 °C, quenched to martensite, and tempered at temperatures between 100 °C and 500 °C. Scanning electron microscopy (SEM) was used to characterize the fracture surfaces of tested CVN specimens and carbide formation on prior austenite grain boundaries. Quench embrittlement, the susceptibility to intergranular fracture in as-quenched and low-temperature tempered high-carbon steels due to cementite formation as affected by phosphorus segregation on austenite grain boundaries, developed readily in specimens of the high phosphorus steel austenitized at all temperatures. The low phosphorus steel developed quench embrittlement only after austenitizing at 1100 °C. Intergranular fractures correlated with low room-temperature CVN impact toughness. The results are discussed with respect to the dissolution of carbides during austenitizing and the effect of phosphorus on grain boundary, carbide formation, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Banerji, C.J. McMahon, Jr., and H.C. Feng: Metall. Trans. A, 1978, vol. 9A, pp. 237–47.

    CAS  Google Scholar 

  2. N. Banyopadhyay and C.J. McMahon, Jr.: Metall. Trans. A, 1983, vol. 14A, pp. 1313–32.

    Google Scholar 

  3. G. Krauss and C.J. McMahon, Jr.: in Martensite, G.B. Olson and W.S. Owen, eds., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 295–321.

    Google Scholar 

  4. C.L. Briant: in Impurities in Engineering Materials, C.L. Briant, ed., Marcel Dekker, Inc., New York, NY, 1999, pp. 193–224.

    Google Scholar 

  5. G. Krauss: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 349–59.

    CAS  Google Scholar 

  6. G. Krauss: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 861–77.

    CAS  Google Scholar 

  7. R.S. Hyde, G. Krauss, and D.K. Matlock: 40th MWSP Conf. Proc., ISS, Warrendale, PA, 1998, pp. 921–28.

    Google Scholar 

  8. H.J. Grabke: in Impurities in Engineering Materials, C.L. Briant, ed., Marcel Dekker, Inc., New York, NY, 1999, pp. 143–92.

    Google Scholar 

  9. J.P. Materkowski and G. Krauss: Metall. Trans. A, 1979, vol. 10A, pp. 1643–51.

    CAS  Google Scholar 

  10. G. Krauss: Metall. Trans. A, 1978, vol. 9A, pp. 1527–35.

    CAS  Google Scholar 

  11. R.S. Hyde, D.K. Matlock, and G. Krauss: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1229–40.

    CAS  Google Scholar 

  12. V. Raghavan: Phase Diagrams of Temary Iron Alloys; Part 3 Ternary Systems Containing Iron and Phosphorus, 1st ed., Indian Institute of Metals, Calcutta, 1988, pp. 33–44.

    Google Scholar 

  13. T. Ando and G. Krauss: Metall. Trans. A, 1981, vol. 12A, pp. 1283–90.

    Google Scholar 

  14. F.A. Darnwish, L.C. Pereira, C. Gatts, and M.L. Graca: Mater. Sci. Eng., 1991, vol. A132, pp. L5-L9.

    Google Scholar 

  15. A. Reguly: Ph.D. Thesis, Universidade Federal do Rio Grande do Sol, Porto Alegre, Brazil, 1999.

    Google Scholar 

  16. T. Maki, K. Tsuzaki, and I. Tamura: Trans. Iron Steel Inst. Jpn., 1986, vol. 20, pp. 207–14.

    Google Scholar 

  17. J.D. Wong, D.K. Matlock, and G. Krauss: 43rd MWSP Conf. Proc., ISS, Warrendale, PA, 2001, pp. 21–36.

    Google Scholar 

  18. G. Thomas: Metall. Trans. A, 1978, vol. 9A, pp. 439–50.

    CAS  Google Scholar 

  19. B.A. James, D.K. Matlock, and G. Krauss: 38th MWSP Conf. Proc., ISS, Warrendale, PA, 1997, vol. XXXIV, pp. 579–90.

    Google Scholar 

  20. E.L. Brown and G. Krauss: Metall. Trans. A, 1986, vol. 17A, pp. 31–36.

    CAS  Google Scholar 

  21. R.A. Grange: Trans. ASM, 1966, vol. 59, pp. 26–48.

    CAS  Google Scholar 

  22. D.L. Yaney: Master’s Thesis, Colorado School of Mines, Golden, CO, 1987.

    Google Scholar 

  23. H.I. Aaronson: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience Publishers, New York, NY, 1962, pp. 387–542.

    Google Scholar 

  24. T. Ando and G. Krauss: Acta Metall., 1981, vol. 29, pp. 351–63.

    Article  CAS  Google Scholar 

  25. N. Bandyopadhyay, J. Kameda, and C.J. McMahon, Jr.: Metall. Trans. A, 1983, vol. 14A, pp. 881–88.

    Google Scholar 

  26. Y. Weng and C.J. McMahon, Jr.: Mat. Sci. and Tech., 1987, vol. 3, pp. 207–216.

    CAS  Google Scholar 

  27. R.L. Bodner, J.R. Michael, S.S. Hansen, and R.I. Jaffee: 30th MWSP Conf. Proc., ISS, Warrendale, PA, 1988, pp. 173–94.

    Google Scholar 

  28. R.L. Bodner, T. Ohhashi, and R.I. Jaffee: Metall. Trans. A, 1989, vol. 20A, pp. 1445–60.

    Google Scholar 

  29. T. Majka: Master’s Thesis, Colorado School of Mines, Golden, CO, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reguly, A., Strohaecker, T.R., Krauss, G. et al. Quench embrittlement of hardened 5160 steel as a function of austenitizing temperature. Metall Mater Trans A 35, 153–162 (2004). https://doi.org/10.1007/s11661-004-0118-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0118-4

Keywords

Navigation