Skip to main content
Log in

Study of the ferrite grain coarsening behind the transformation front by electron backscattered diffraction techniques

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The degree of ferrite grain refinement that can be reached in low-carbon microalloyed steels by thermomechanical processing is limited, to a certain extent, by the grain coarsening which can take place behind the transformation front. The coarsening of ferrite grains is the result of two different mechanisms: elimination of ferrite grains produced by normal grain growth after full impingement on the austenite grain boundary plane and/or coalescence between different ferrite grains with close orientation formed from the same crystallographic variant. The lack of experimental data to support either process is due to the experimental difficulties encountered when analyzing the phenomenon. Some transmission electron microscope (TEM) observations reveal that the ferrite grains formed along a prior grain boundary in deformed austenite are separated by a mixture of low and high angle grain boundaries upon impingement. In the present work, the electron backscattered diffraction (EBSD) technique has been applied to investigate the microstructural evolution during transformation, with special emphasis placed on the α-α grain boundary character as a means of investigating the contribution of coalescence/grain growth to coarsening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tanaka: in Microalloying 95, M. Korchynsky, A.J. DeArdo, P. Repas, and G. Tither, eds., ISS, Pittsburgh, PA, 1995, pp. 165–81.

    Google Scholar 

  2. H.I. Aaronson, M. Enomoto, T. Furuhara, and W.T. Reynolds: Thermec 88, Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, I. Tamura, ed., ISIJ, Tokyo, 1988, vol. 1, pp. 80–89.

    Google Scholar 

  3. I. Tamura: Thermec 88, Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, I. Tamura, ed., ISIJ, Tokyo, 1988, vol. 1, pp. 1–10.

    Google Scholar 

  4. R. Bengochea, B. López, and I. Gutiérrez: Iron Steel Inst. Jpn., 1999, vol. 39 (6), pp. 583–91.

    CAS  Google Scholar 

  5. R. Priestner and P.D. Hodgson: Mater. Sci. Technol., 1992, vol. 8, pp. 849–54.

    CAS  Google Scholar 

  6. R. Bengochea, B. López, and I. Gutiérrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 417–26.

    Article  CAS  Google Scholar 

  7. E. Cotrina, A. Argüelles, R. Bengochea, B. López, and I. Gutiérrez: Int. Conf. on Thermomechanical Processing of Steels, IOM Communications, London, 2000, pp. 255–64.

    Google Scholar 

  8. R. Priestner and L. Ali: Mater. Sci. Technol., 1993, vol. 9, pp. 135–41.

    CAS  Google Scholar 

  9. R. Priestner and A.M.A. Al-Badri: Int. Conf. on HSLA Steels 95, Beijing, 1995.

  10. D.R. Barraglough, H.J. Whittaker, K.D. Nair, and C.M. Sellars: J. Test Eval., 1973, vol. 1, pp. 220–26.

    Article  Google Scholar 

  11. R.T. De Hoff and F.N. Rhines: Quantitative Microscopy, McGraw-Hill Book Co., New York, NY, 1968, pp. 129–50.

    Google Scholar 

  12. Y. Takayama, N. Furushiro, T. Tozawa, H. Kato, and S. Hori: Mater. Trans. JIM, 1991, vol. 32, pp. 214–21.

    CAS  Google Scholar 

  13. C.M. Sellars and J.H. Beynon: Proc. Conf. on High Strength Low Alloy Steels, D. Dunne and T. Chandra, eds., South Coast Printers, Wollongong, Australia, 1984, p. 142.

    Google Scholar 

  14. R.K. Gibbs, B.A. Parker, and P. Hodgson: Int. Symp. on Low-Carbon Steels for the 90′s, R. Asfahani and G. Tither, eds., TMS, 1993, p. 173.

  15. W. Roberts, H. Lidefelt, and A. Sandberg: Int. Conf. on Hot Working and Forming Processes, C.M. Sellars and G.J. Davies, eds., The Metals Society, London, 1980, pp. 38–42.

    Google Scholar 

  16. C. Ouchi, T. Sampei, and I. Kozasu: Trans. Iron Steel Jpn., 1982, vol. 22, p. 215.

    Google Scholar 

  17. I. Kozasu, C. Ouchi, T. Sampei, and T. Okita: Microalloying 75, M. Korchynsky, ed., Union Carbide Corp., New York, NY, 1976, vol. 1, p. 100.

    Google Scholar 

  18. E.E. Underwood: Quantitative Stereology, 1st ed., Reading, MA: Addison-Wesley, 1970, pp. 33–38.

    Google Scholar 

  19. C.M. Sellars: Recrystallization 92, Int. Conf. on Recrystallization and Related Phenomena, M. Fuentes and J. Gil Sevillano, eds., Materials Science Forum, San Sebastián, Spain, 1993, pp. 29–40.

    Google Scholar 

  20. R.T. De Hoff and F.N. Rhines: Quantitative Microscopy, McGraw-Hill Book Co., New York, NY, 1968, pp. 77–128.

    Google Scholar 

  21. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Co., New York, NY, 1981, p. 378.

    Google Scholar 

  22. J. Jensen: Int. Conf. Recristallization and Grain Growth, G. Gottstein and D.A. Molodow, eds., Springer-Verlag, Berling, 2001, pp. 73–86.

    Google Scholar 

  23. A.F. Gourgues, H.M. Flower and T.C. Lindley: Mater. Sci. Technol., 2000, vol. 16, pp. 26–40.

    Article  CAS  Google Scholar 

  24. T.O. Saetre and N. Ryum: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1687–97.

    CAS  Google Scholar 

  25. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon/Elsevier Science Inc., New York, NY, 1995, pp. 1042–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotrina, E., Iza-Mendia, A., López, B. et al. Study of the ferrite grain coarsening behind the transformation front by electron backscattered diffraction techniques. Metall Mater Trans A 35, 93–102 (2004). https://doi.org/10.1007/s11661-004-0112-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0112-x

Keywords

Navigation