Skip to main content
Log in

Quantifying thermomechanical fatigue of light-metal-matrix composites by mechanical spectroscopy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article reviews recent progress in understanding the stress-relaxation mechanisms in metal-matrix composites (MMCs) subjected to thermomechanical fatigue. Mechanical loss, dynamic shear modulus, and permanent torsional-strain measurements have been performed with forced oscillations during thermal cycling. A transient mechanical-loss maximum, which is absent in the monolithic material, appears during cooling. It has been attributed to the development of plastic zones around the reinforcements by dislocation generation and motion, which result from the differential thermal contraction of the matrix and reinforcement. This damping maximum is strongly dependent on both measurement and material parameters. The reversible shear-modulus evolution during thermal cycling suggests that no interfacial debonding occurs. In unalloyed matrices, extended thermal-stress-induced pleasicity occurs, leading to a plateau in the shear modulus, which is recovered at low temperatures by plastic-zone overlapping and matrix strain hardening. Simultaneously measured strain-temperature loops exhibit both reversible and permanent plasticity during thermal cycling (strain ratcheting).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Taya and R.J. Arsenault: Metal Matrix Composites, Pergamon Press, Oxford, United Kingdom, 1989.

    Google Scholar 

  2. T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites, Cambridge University Press, New York, NY, 1993.

    Google Scholar 

  3. S. Suresh, A. Mortensen, and A. Needleman: Fundamentals of Metal Matrix Composites, Butterworth-Heinemann, Boston, MA, 1993.

    Google Scholar 

  4. K.K. Chawla and M. Metzger: J. Mater. Sci., 1972, vol. 7, p. 34.

    Article  CAS  Google Scholar 

  5. M. Vogelsang, R. Arsenault, and R. Fisher: Metall. Trans., A, 1980, vol. 17A, p. 379.

    Google Scholar 

  6. N. Shi and R.J. Arsenault: in Advances in Composite Materials and Structures, ASME Winter Annual Meeting, Anaheim, CA, 1986, S.S. Wang and Y. Rajapakse, eds., The American Society of Mechanical Engineers, New York, 1989, pp. 15–20.

    Google Scholar 

  7. D. Dunand and A. Mortensen: Acta Metall. Mater., 1991, vol. 39, p. 127.

    Article  CAS  Google Scholar 

  8. D. Dunand and A. Mortensen: Acta Metall. Mater., 1991, vol. 39, p. 1405.

    Article  CAS  Google Scholar 

  9. G. Gagnon: Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne, 1995.

    Google Scholar 

  10. G. Gagnon and F. Rézaï-Aria: in High Performance Composites: Commonality of Phenomena, K.K. Chawla, P.K. Liaw, and S.G. Fishman, eds., TMS, Warrendale, PA, 1994, pp. 475–81.

    Google Scholar 

  11. N. Chawla and Y.-L. Shen: Adv. Eng. Mater., 2001, vol. 3, p. 357.

    Article  CAS  Google Scholar 

  12. A.S. Nowick and B.S. Berry: Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1972.

    Google Scholar 

  13. Mechanical Spectroscopy, R. Schaller, G. Fantozzi, and G. Gremaud, eds., Trans Tech Publications Ltd., Uetikon-Zurich, Switzerland, 2001.

    Google Scholar 

  14. S. Long, O. Beffort, C. Cayron, and C. Bonjour: Mater. Sci. Eng., 1999, vol. A269, p. 175.

    CAS  Google Scholar 

  15. E. Carreño-Morelli, T. Cutard, R. Schaller, and C. Bonjour: Mater. Sci. Eng., 1998, vol. A251, p. 48.

    Google Scholar 

  16. N. Chawla, U. Habel, Y.-L. Shen, C. Andres, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 2000, vol. 31A, p. 531.

    CAS  Google Scholar 

  17. A. Vincent, G. Lormand, S. Durieux, C. Girard, E. Maire, and R. Fougères: J. Phys. IV, 1996, vol. 6, p. C8–719.

    Google Scholar 

  18. L. Parrini and R. Schaller: Acta Mater., 1996, vol. 44, p. 4881.

    Article  CAS  Google Scholar 

  19. E. Carreño-Morelli, S.E. Urreta, R. Schaller, and L. Gabella: J. Phys. IV, 1996, vol. 6, p. C8–735.

    Google Scholar 

  20. A. Vincent and J. Perez: Phil. Mag. A, 1979, vol. 40, p. 377.

    CAS  Google Scholar 

  21. E. Carreño-Morelli, S.E. Urreta, and R. Schaller: Sci. Eng. Compos. Mater., 1999, vol. 8, p. 45.

    Google Scholar 

  22. S.E. Urreta, R. Schaller, E. Carreño-Morelli, and L. Gabella: J. Phys. IV, 1996, vol. 6, p. C8–747.

    Google Scholar 

  23. E. Carreño-Morelli, S.E. Urreta, and R. Schaller: Phys. Status Solid: (a), 1998, vol. 167, p. 61.

    Article  Google Scholar 

  24. E. Carreño-Morelli, S.E. Urreta, and R. Schaller: Acta Mater., 2000, vol. 48, p. 4725.

    Article  Google Scholar 

  25. R. Hill: The Mathematical Theory of Plasticity, Oxford University Press, Oxford, United Kingdom, 1983, p. 126.

    Google Scholar 

  26. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  27. M.F. Ashby: Phil. Mag., 1970, vol. 21, p. 399.

    CAS  Google Scholar 

  28. C. Mayencourt and R. Schaller: Acta Mater., 1998, vol. 46, p. 6103.

    Article  CAS  Google Scholar 

  29. C. Mayencourt: Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne, 1999.

    Google Scholar 

  30. F. Chmelík, J. Kiehn, P. Lukác, K.U. Kainer, and B.L. Mordike: Scripta Mater., 1998, vol. 38, p. 81.

    Google Scholar 

  31. Ø. Bremnes, E. Carreño-Morelli, and G. Gremaud: J. Alloys Compounds, 2000, vol. 310, p. 62.

    Article  CAS  Google Scholar 

  32. E. Carreño-Morelli and R. Schaller: Phys. Status Solidi (a), 2002, vol. 194, pp. R1-R3.

    Article  Google Scholar 

  33. C. Mayencourt and R. Schaller: Phys. Status Solidi (a), 1997, vol. 163, p. 357.

    Article  CAS  Google Scholar 

  34. L. Donzel, Y. Mi, and R. Schaller: Physica C, 1995, vol. 250, p. 75.

    Article  CAS  Google Scholar 

  35. D.P. Almond: Physical Acoustics, Academic Press, New York, NY, 1992, vol. XX, pp. 409–33.

    Google Scholar 

  36. B.K. Min: in Advances in Composite Materials and Structures, ASME Winter Annual Meeting, Anaheim, CA, 1986, S.S. Wang and Y. Rajapakse, eds., The American Society of Mechanical Engineers, New York, 1989, pp. 29–36.

    Google Scholar 

  37. G. Garmong: Metall. Trans., 1974, vol. 5, pp. 2183–90.

    CAS  Google Scholar 

  38. H. Hübel: Nucl. Eng. Des., 1996, vol. 162, p. 55.

    Article  Google Scholar 

  39. Y.-L. Shen: Mater. Sci. Eng., 1998, vol. A252, p. 269.

    CAS  Google Scholar 

  40. S. Suresh, A.E. Giannakopoulos, and M. Olson: J. Mech. Phys. Solids, 1994, vol. 42, p. 979.

    Article  CAS  Google Scholar 

  41. F. Delannay: in Comprehensive Composite Materials, A. Kelly, C. Zweben, and T.W. Clyne, eds., Elsevier Science, New York, NY, 2000, vol. III, pp. 341–69.

    Google Scholar 

  42. E. Carreño-Morelli, N. Chawla, and R. Schaller: J. Mater. Sci. Lett., 2001, p. 163.

  43. J.-E. Bidaux, R. Schaller, and W. Benoit: Acta Metall., 1989, vol. 37, p. 803.

    Article  CAS  Google Scholar 

  44. J. Van Humbeeck: Mater. Sci. Forum, 2001, vols. 366–368, p. 382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carreño-Morelli, E. Quantifying thermomechanical fatigue of light-metal-matrix composites by mechanical spectroscopy. Metall Mater Trans A 35, 25–35 (2004). https://doi.org/10.1007/s11661-004-0105-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0105-9

Keywords

Navigation