Skip to main content
Log in

Characterizing small fatigue cracks in metallic alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Small fatigue cracks grow faster than large fatigue cracks and below the large-crack threshold, and it is necessary to include these characteristics in many life-prediction models. Numerous micromechanics experimental measurements have been made to determine the origin of this anomalous small-crack behavior and to unify and predict small- and large-crack growth-rate behavior. Micromechanics showed that a stress-intensity factor described the crack-opening displacement (COD). Four methods for characterizing small-fatigue-crack behavior are reviewed: three based on fracture mechanics and one empirical. The three fracture mechanics-based methods are essentially complementary to each other and allow prediction of small-crack growth-rate behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lankford and D.L. Davidson: in Fatigue Crack Growth Threshold Concepts, D. Davidson and S. Suresh, eds., TMS, Warrendale, PA, 1984, pp. 447–63.

    Google Scholar 

  2. D.L. Davidson and J. Lankford: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS, Warrendale, PA, 1986, pp. 455–70.

    Google Scholar 

  3. D.L. Davidson: Acta Metall., 1988, vol. 36, pp. 2275–82.

    Article  CAS  Google Scholar 

  4. D.L. Davidson: in Small Crack Test Methods, ASTM STP-1149, J.M. Larsen and J.E. Allison, eds., ASTM, Philadelphia, PA, 1992, pp. 81–91.

    Google Scholar 

  5. D.L. Davidson and S.J. Hudak: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2247–57.

    CAS  Google Scholar 

  6. D.L. Davidson and A. Nagy: J. Phys. E, 1978, vol. 11, pp. 207–10.

    Article  Google Scholar 

  7. D.R. Williams, D.L. Davidson, and J. Lankford: Exp. Mech., 1980, vol. 20, pp. 134–39.

    Article  Google Scholar 

  8. E.A. Franke, D. Wenzel, and D.L. Davidson: Rev. Scientific Instrum., 1991, vol. 62, pp. 1270–79.

    Article  CAS  Google Scholar 

  9. D.L. Davidson: in Small Fatigue Cracks: Mechanics, Mechanisms, and Applications, K.S. Ravichandran, R.O. Ritchie, and Y. Murakami, eds., Elsevier Science, New York, NY, 1999, pp. 109–18.

    Google Scholar 

  10. D.L. Davidson: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 445–52.

    Article  Google Scholar 

  11. D.L. Davidson and J. Lankford: Int. Mater. Rev., 1992, vol. 37 (2), pp. 45–76.

    CAS  Google Scholar 

  12. D. Broek: Elementary Engineering Fracture Mechanics, 4th revised ed., Martinus Nijhoff Publ., Dordrecht, The Netherlands, 1986, p. 80.

    Google Scholar 

  13. S.J. Hudak, Jr. and D.L. Davidson: in Mechanics of Fatigue Crack Closure, ASTM STP-982, J.C. Newman and W. Elber, eds., ASTM, Philadelphi, PA, 1988, pp. 121–88.

    Google Scholar 

  14. V. Vaida: J. Testing Evaluation, 1992, vol. 20, pp. 168–79.

    Article  Google Scholar 

  15. S. Pearson: Eng. Fract. Mech., 1975, vol. 7, pp. 235–47.

    Article  CAS  Google Scholar 

  16. K. Tanaka, Y. Nakai, and M. Yamashita: Int. J. Fracture, 1981, vol. 17, pp. 519–33.

    CAS  Google Scholar 

  17. H. Doker, V. Bachmann, and G. Marci: in Fatigue Thresholds, J. Backlund, A. Blom, and C. Beevers, eds., EMAS, Warley, United Kingdom, 1982, vol. 1, pp. 45–57.

    Google Scholar 

  18. R.O. Ritchie, D.L. Davidson, B.L. Boyce, J.P. Campbell, and O. Roder: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 20, pp. 621–31.

    Article  Google Scholar 

  19. S.J. Hudak, K.S. Chan, G.G. Chell, Y.-D. Lee, and R.C. McClung: in Fatigue, David L. Davidson, K.S. Chan, P.K. Liaw, R.S. Bellows, T. Zogas, and W.O. Soboyejo, eds., TMS, Warrendale, PA, 2002, pp. 107–20.

    Google Scholar 

  20. H. Kitagawa and S. Takahashi: Proc. 2nd Int. Conf. on Mechanical Behavior of Materials, Boston, ASM, Metals Park, OH, 1976, pp. 627–31.

    Google Scholar 

  21. M.H. El Haddad, K.N. Smith, and T.H. Topper: J. Eng. Mater. Technol. Trans. ASME, 1979, vol. 101, pp. 42–46.

    Article  Google Scholar 

  22. N.E. Frost and D.S. Dugdale: J. Mech. Phys. Solids, 1958, vol. 6, pp. 92–110.

    Article  Google Scholar 

  23. H. Nisitani: in Mechanics of Fatigue, T. Mura, ed., ASME, New York, NY, 1981, pp. 151–66.

    Google Scholar 

  24. M.J. Caton, J.W. Jones, and J.E. Allison: in Small Fatigue Cracks: Mechanics, Mechanisms, and Applications, K.S. Ravichandran, R.O. Ritchie, and Y. Murakami, eds., Elsevier Science, New York, NY, 1999, pp. 155–66.

    Google Scholar 

  25. Small Fatigue Cracks: Mechanics, Mechanisms, and Applications, K.S. Ravichandran, R.O. Ritchie, and Y. Murakami, eds., Elsevier Science, New York, NY, 1999.

    Google Scholar 

  26. A. Boyd-Lee and J. King: in Fatigue Design, ESIS 16, J. Solin, G. Marquis, A. Siljander, and S. Sipila, eds., Mechanical Engineering Publs., London, 1993, pp. 283–96.

    Google Scholar 

  27. R.K. Bolingbroke and J. King: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS, Warrendale, PA, 1986, pp. 129–44.

    Google Scholar 

  28. L. Wagner, J.K. Gregory, A. Gysler, and G. Lutjering: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS, Warrendale, PA, 1986, pp. 117–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, D.L. Characterizing small fatigue cracks in metallic alloys. Metall Mater Trans A 35, 7–14 (2004). https://doi.org/10.1007/s11661-004-0103-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0103-y

Keywords

Navigation