Skip to main content
Log in

Some studies on the thermal-expansion behavior of c-fiber, SiC p , and in-situ Mg2Si-Reinforced AZ31 Mg alloy-Based hybrid composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Magnesium alloy-based hybrid composites with carbon-fiber, SiC p , and in-situ Mg2Si reinforcements have been prepared by the squeeze-infiltration technique. The results of the studies done on the measurement of the coefficient of thermal expansion after thermal cycling of these composites show that the thermal cycling initially leads to rapid linear expansion of the composite. However, the expansion becomes stabilized after a few cycles, pointing toward formation of the stable interfaces due to the formation of stable precipitates. The model for the growth kinetics of these precipitates at the interface shows a rapid initial growth of the precipitates with the number of thermal cycles, which becomes saturated after a few thermal cycles. The thermal treatment of the composite lowers the coefficient of linear thermal expansion, which can be explained on the basis of further stabilization of the interfaces after the thermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Luo: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2445–55.

    CAS  Google Scholar 

  2. ASM International Handbook Committee: Metals Handbook, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2.

  3. A. Luo, J. Renaud, I. Nakatsugawa, and J. Plourde: JOM, 1995, vol. 7, p. 28.

    Google Scholar 

  4. Hu Lianxi and Wang Erde: Mater. Sci. Eng. A, 2000, vol. A278. pp. 267–71.

    Google Scholar 

  5. Karl Ulrich Kainer, Thorsten Ebert, and Barry L. Mordike: Proc. Int. Conf. on Spray Deposition and Melt Atomization, SDMA2000, Universität Bremen, Bremen, Germany, June 26–28, 2000, K. Bauckhage, V. Uhlenwinkel, and U. Fritsching, eds., Books on demand GmBH, Bremen, 2000, pp. 341–354.

    Google Scholar 

  6. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. A302, pp. 37–45.

    CAS  Google Scholar 

  7. J. Schröder and K.U. Kainer: Mater. Sci. Eng. A, 1991, vol. A135, pp. 33–36.

    Google Scholar 

  8. K.U. Kainer, H. Dieringa, P. Schulz, and J. Reiter: Proc. Int. Congr. on Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000, pp. 240–45.

    Chapter  Google Scholar 

  9. Armin Feldoff, Eckhard Pippel, and Jörg Woltersdorf: Adv. Eng. Mater., 2000, vol. 2 (8), pp. 471–80.

    Article  Google Scholar 

  10. L. Aggour, E. Fitzer, M. Heyn, and E. Ignatowitz: Thin Solid Films, 1977, vol. 40, p. 97.

    Article  CAS  Google Scholar 

  11. I.J. Polmear: Light alloys—Metallurgy of the Light Metals, Edward Arnold, London, 1981.

    Google Scholar 

  12. I.J. Polear: in Magnesium Alloys and their Applications, B.L. Mordike and F. Hehmann, eds., DGM Informations-Gesellschaft, Oberursel, 1992, pp. 201–12.

    Google Scholar 

  13. M.Ö. Pekgüleryüz and M.M. Avedisian: in Magnesium Alloys and Their Applications, B.L. Mordike and F. Hehmann, eds., DGM Informations-Gesellschaft, Oberursel, 1992, pp. 213–20.

    Google Scholar 

  14. H. Westengen: J. Phys. IV, vol. 3 (C7), 1993, pp. 491.

    CAS  Google Scholar 

  15. L.D. Wang, W.D. Fei, and C.K. Yao: Mater. Sci. Eng. A, 2002, vol. A336, pp. 110–16.

    CAS  Google Scholar 

  16. C.M. Warwick and T.W. Clyne: in Fundamental Relationships Between Microstructure and Mechanical Properties of Metal-Matrix Composites, P.K. Liaw and M.N. Gungor, eds., TMS, Warrendale, PA, 1990, pp. 209–23.

    Google Scholar 

  17. F. Chmelík, Z. Trojanová, J. Kiehn, P. Lukác, and K.U. Kainer: Mater. Sci. Eng. A, 1997, vol. A234-A236, pp. 774–77.

    Google Scholar 

  18. Z.R. Xu, K.K. Chawla, A. Wolfenden, A. Neuman, G.M. Liggett, and N. Chawla: Mater. Sci. Eng. A, 1995, vol. A203, pp. 75–80.

    CAS  Google Scholar 

  19. F. Chmelík, J. Kiehn, P. Lukác, K.U. Kainer, and B.L. Mordike: Scripta Mater., 1998, vol. 38 (1), pp. 81–87.

    Google Scholar 

  20. M.H. Lin, W. Buchgraber, G. Korb, and P.W. Kao: Scripta Mater., 2002, vol. 46, pp. 169–73.

    Article  CAS  Google Scholar 

  21. S.L. Kuo and P.W. Kao: Mater. Chem. Phys., 1999, vol. 58, pp. 83–6.

    Article  CAS  Google Scholar 

  22. H. Hegeler, R. Buschmann, and I. Elstner: in Metallische Verbundwerkstoffe, K.U. Kainer, ed., DGM Informationsgesellschaft, Verlag, Germany, 1994, pp. 101–16.

    Google Scholar 

  23. K.U. Kainer: in Metallische Verbundwerkstoffe, K.U. Kainer, ed., DGM Informationsgesellschaft, Verlag, Germany, 1994, pp. 219–44.

    Google Scholar 

  24. S.K. Thakur, B.K. Dhindaw, N. Hort, and K.U. Kainer: Proc. 9th Int. Ann. Conf. on Composites Engineering, ICCE/9, David Hui, ed., San Diego, CA, July 1–6, 2002, pp. 775–76.

  25. S.T. Mileiko: in Handbook of Composites, A. Kelly and S.T. Mileiko, eds., Elsevier Science Publishers B.V., Amsterdam, 1983, vol. 4.

    Google Scholar 

  26. G.A. Geffrey and V.Y. Wu: Acta Crystallogr., 1963, vol. 16, pp. 559.

    Article  Google Scholar 

  27. T.M. Gesing, R. Pöttgen, W. Jeitschko, and U. Wortmann: J. Alloys Compounds, 1992, vol. 186, p. 321.

    Article  CAS  Google Scholar 

  28. C. Qui and R. Metselaar: J. Alloys Compounds, 1994, vol. 216, p. 55.

    Article  Google Scholar 

  29. H.M. Flowers and A.J. Morris: in Magnesium Technology, Accession Number 87(10): 72–565, Institute of Metals, London, 1987, pp. 128–32.

    Google Scholar 

  30. J.C. Viala, F. Bosselet, G. Claveyrolas, F.B. Mentzen, and J. Bouix: Eur. J. Solid State Inorg. Chem., 1991, vol. 28, p. 1063.

    CAS  Google Scholar 

  31. F. Bosselet, B.F. Mentzen, J.C. Viala, M.A. Etoh, and J. Bouix: Eur. J. Solid State Inorg. Chem., 1998, vol. 35, pp. 91.

    Article  CAS  Google Scholar 

  32. A. Feldhoff, E. Pippel, and J. Woltersdorf: Phil. Mag. A, 1999, vol. 79, p. 1263.

    Article  ADS  CAS  Google Scholar 

  33. J.C. Viala, G. Claveyrolas, F. Bosselet, and J. Bouix: J. Mater. Sci., 2000, vol. 35, p. 1813.

    Article  CAS  Google Scholar 

  34. Feng Wu and Jing Zhu: Compos. Sci. Technol., 1997, vol. 57, pp. 661–67.

    Article  CAS  Google Scholar 

  35. D. Toitot, E. Andrieu, and P. Jarry: Proc. 12th Risø Int. Symp. on Metal Matrix Composites—Processing, Microstructure and Properties, N. Hansen, D.J. Jensen, T. Leffers, H. Lilholt, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Risø National Laboratory, Denmark, 1991, pp. 695–700.

    Google Scholar 

  36. W.G. Patterson and M. Taya: Proc. 5th Int. Conf. on Composite Materials—ICCM-V, W.C. Harrigan, J. Strife, and A. Dhingra, eds., TMS-AIME, Warrendale, PA, 1985, pp. 53–66.

    Google Scholar 

  37. Elhem Ghorbel: Compos. Sci. Technol., 1997, vol. 57, pp. 1045–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, S.K., Dhindaw, B.K., Hort, N. et al. Some studies on the thermal-expansion behavior of c-fiber, SiC p , and in-situ Mg2Si-Reinforced AZ31 Mg alloy-Based hybrid composites. Metall Mater Trans A 35, 1167–1176 (2004). https://doi.org/10.1007/s11661-004-0043-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0043-6

Keywords

Navigation