On the precipitation-hardening behavior of the Al−Mg−Si−Cu alloy AA6111

Abstract

The precipitation-hardening behavior of aluminum alloy AA6111 during artificial aging and the influence of prior natural aging on the aging behavior were investigated. The evolution of microstructure was studied using quantitative transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The evolution of the relative volume fraction of precipitates for the solution-treated alloy was determined using isothermal calorimetry and a new analysis based on the DSC technique. Quantitative TEM was also used to obtain the rate of precipitation of microscopically resolvable phases during aging at 180 °C. Three types of precipitates, i.e., unresolved Guinier-Preston (GP) zones, β″, and Q′, were found to form during aging at 180 °C. The evolution of yield strength was related to the evolution of microstructure. It was found that the high hardening rate during artificial aging for the solution-treated alloy is due to the rapid precipitation of the β″ phase. Natural aging prior to artificial aging was found to decrease the rate of precipitation of β″. The slow hardening rate for the naturally aged alloy was attributed to the slower nucleation and growth of β″ phase.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P.E. Fortin, M.J. Bull, and D.M. Moore: SAE Int. Congr. Exp., Detroit, MI, 1983, SAE Paper no. 830096.

  2. 2.

    E.A. Starke, Jr. and A.A. Csontos: Proc. 6th Int. Conf. on Aluminum Alloys, Their Physical and Mechanical Properties, ICAA-6, Toyohashi, Japan, 1998, The Japan Institute of Light Metals, Tokyo, Japan, 1998, vol. 4, pp. 2077–88.

    Google Scholar 

  3. 3.

    R. Dif, D. Bechet, T. Warner, and H. Ribes: Proc. 6th Int. Conf. on Aluminum Alloys, Their Physical and Mechanical Properties, ICAA-6, Toyohashi, Japan, 1998. The Japan Institute of Light Metals, Tokyo, Japan, 1998, vol. 3, pp. 1991–96.

    Google Scholar 

  4. 4.

    R. Dif, B. Bès, T. Warner, P. Lequeu, H. Ribes, and P. Lassince: in Advances in the Metallurgy of Aluminum Alloys, M. Tiryakioglu, ed., ASM International, Materials Park, OH, 2001, pp. 390–97.

    Google Scholar 

  5. 5.

    D.J. Lloyd: in Advances in Industrial Materials, D.S. Wilkinson and W.J. Poole, eds., Canadian Institute of Mining, Metallurgy, and Petroleum, Montreal, Canada, 1998, pp. 3–17.

    Google Scholar 

  6. 6.

    D. Bryant: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1999–2006.

    Article  CAS  Google Scholar 

  7. 7.

    D.W. Pashley, J.W. Rhodes, and A. Sendorek: J. Inst. Met., 1996, vol. 94, pp. 41–49.

    Google Scholar 

  8. 8.

    A.K. Gupta, P.H. Marois, and D.J. Lloyd: Mater. Sci. Forum, 1996, Vols. 217–222, pp. 801–08.

    Google Scholar 

  9. 9.

    W.J. Poole, D.J. Lloyd, and J.D. Embury: Mater. Sci. Eng. A, 1997, vols. A234-A236, pp. 306–09.

    Google Scholar 

  10. 10.

    D.J. Lloyd and A.K. Gupta: Thermec 97, Proc. Int. Conf. on Thermomechanical Processing of Steels and Other Materials, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, pp. 99–107.

    Google Scholar 

  11. 11.

    W.F. Miao and D.E. Laughlin, Proc. Automotive Alloys 1999, electronic publication (www.tms.org), S.K. Das, ed., TMS, Warrendale, PA, 2000, pp. 223–38.

    Google Scholar 

  12. 12.

    D.J. Lloyd, D.R. Evans, and A.K. Gupta: Can. Metall. Q., 2000, vol. 39, pp. 475–81.

    CAS  Google Scholar 

  13. 13.

    S. Esmaeili, D.J. Lloyd, and W.J. Poole, Proc. Automotive Alloys 1999, electronic publication (www.tms.org), S.K. Das, ed., TMS, Warrendale, PA, 2000, pp. 143–52.

    Google Scholar 

  14. 14.

    S. Esmaeili, W.J. Poole, and D.J. Lloyd: Advances in the Metallurgy of Aluminum Alloys, M. Tiryakioglu, ed., ASM INTERNATIONAL, Materials Park, OH, 2001, pp. 243–47.

    Google Scholar 

  15. 15.

    D.B. Williams and C.B. Carter: Transmission Electron Microscopy, Plenum Press, New York, NY, 1996, vol. III, pp. 369–78.

    Google Scholar 

  16. 16.

    P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Whelan: Electron Microscopy of Thin Crystals, 3rd ed., Robert E. Krieger Publishing Co., Huntington, NY, 1997, pp. 415–22.

    Google Scholar 

  17. 17.

    X. Wang: McMaster University, Hamilton, ON, Canada, unpublished results, 2001.

  18. 18.

    S.J. Andersen: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1931–37.

    Article  CAS  Google Scholar 

  19. 19.

    M. Vivas, P. Lours, C. Levaillant, A. Couret, M. Casanove, and A. Coujou: Proc. 6th Int. Conf. on Aluminum Alloys, Their Physical and Mechanical Properties, ICAA-6, Toyohashi, Japan, 1998, The Japan Institute of Light Metals, Tokyo, Japan, 1998, vol. 2, pp. 943–48.

    Google Scholar 

  20. 20.

    E.E. Underwood: Quantitative Stereology, Addison-Wesley, Reading, MA, 1970, pp. 141–43.

    Google Scholar 

  21. 21.

    S. Esmaeili: Ph.D. Thesis, The University of British Columbia, Vancouver, Canada, 2002.

  22. 22.

    W.F. Miao and D.E. Laughlin: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 361–71.

    Article  CAS  Google Scholar 

  23. 23.

    M. Murayama, K. Hono, W.F. Miao, and D.E. Laughlin: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 239–46.

    Article  CAS  Google Scholar 

  24. 24.

    G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Acta Mater., 1998, vol. 46 (11), pp. 3893–3904.

    Article  CAS  Google Scholar 

  25. 25.

    D. Bryant, H. Kung, and A. Misra: in Automotive Alloys II, S.K. Das, ed., TMS, Warrendale, PA, 1998, pp. 3–17.

    Google Scholar 

  26. 26.

    W.F. Miao and D.E. Laughlin: J. Mater Sci. Lett., 2000, vol. 19 (3), pp. 201–03.

    Article  CAS  Google Scholar 

  27. 27.

    A. Perovic: McMaster University, Hamilton, ON, Canada, private communication, 1999.

  28. 28.

    A.J. Ardell: Metall. Trans. A., 1985, vol. 16A, pp. 2131–65.

    CAS  Google Scholar 

  29. 29.

    L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., John Wiley & Sons Inc., New York, NY, 1971, pp. 9–135.

    Google Scholar 

  30. 30.

    S. Esmaeili, W.J. Poole, and D.J. Lloyd: Mater. Sci. Forum, 2000, vols. 331–337, pp. 995–1000.

    Google Scholar 

  31. 31.

    S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, and O. Reiso: Acta Mater., 1998, vol. 46 (9), pp 3283–98.

    Article  CAS  Google Scholar 

  32. 32.

    G.C. Weatherly, A. Perovic, N.K. Mukhopadhyay, D.J. Lloyd, and D.D. Perovic: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 213–18.

    Article  CAS  Google Scholar 

  33. 33.

    J.M. Papazian: Metall. Trans. A, 1981, vol. 12A, pp. 269–80.

    Google Scholar 

  34. 34.

    E. Donoso: Mater. Sci. Eng., 1985, vol. 54, pp. 39–46.

    Google Scholar 

  35. 35.

    L. Zhuang, J.E. Janse, P. De Smet, J.H. Chen, and H.W. Zandbergen: Aluminum 2001, S.K. Das, J.G. Kaufman, and T.J. Lienert, eds., TMS, Warrendale, PA, 2001, pp. 77–91.

    Google Scholar 

  36. 36.

    K. Matsuda, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno: Mater. Sci. Forum, 2000, vols. 331–337, pp. 989–94.

    Article  Google Scholar 

  37. 37.

    M. Murayama and K. Hono: Acta Mater., 1999, vol. 47 (5), pp. 1537–48.

    Article  CAS  Google Scholar 

  38. 38.

    M. Murayama, K. Hono, M. Saga, and M. Kikuchi: Mater. Sci. Eng. A, 1998, vol. A250, pp. 127–32.

    Article  Google Scholar 

  39. 39.

    C.D. Marioara, S.J. Andersen, J. Jansen, and H.W. Zandbergen: Acta Mater., 2001, vol. 49, pp. 321–28.

    Article  CAS  Google Scholar 

  40. 40.

    A. Perovic, D.D. Perovic, G.C. Weatherly, and D.J. Lloyd: Scripta Mater., 1999, vol. 41, pp. 703–08.

    Article  CAS  Google Scholar 

  41. 41.

    W.F. Miao and D.E. Laughlin: Carnegie Mellon University, Pittsburgh, PA, unpublished results, 2000.

  42. 42.

    K. Matsuda, Y. Uetani, T. Sato, and S. Ikeno: Metall. Mater. Trans. A, 2001, vol., 32A, pp. 1293–99.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

S. ESMAEILI, formerly Ph.D. Student, Department of Metals and Materials Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Esmaeili, S., Wang, X., Lloyd, D.J. et al. On the precipitation-hardening behavior of the Al−Mg−Si−Cu alloy AA6111. Metall Mater Trans A 34, 751–763 (2003). https://doi.org/10.1007/s11661-003-1003-2

Download citation

Keywords

  • Differential Scanning Calorimetry
  • Material Transaction
  • Artificial Aging
  • Aged Material
  • Differential Scanning Calorimetry Trace