Skip to main content
Log in

On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Warren-Averbach (WA) analysis and other simplified methods that are commonly used to determine the grain size of nanocrystalline materials are discussed in terms of accuracy and applicabilities. The nanocrystalline materials used in the present study are prepared by cryomilling of A1 powders and subsequent consolidation (hot isostatic pressing and extrusion). Transmission electron microscopy observations of the as-extruded nanocrystalline A1 reveal a bimodal distribution of grain sizes centered around 50 to 100 nm and 250 to 300 nm. It is shown that the grain size determined by the WA analysis agrees with the lower bound grain size (e.g., 50 to 100 nm) observed experimentally. In the case of the integral method, it is useful to use a parabolic (Cauchy-Gaussian (CG)) relationship to approximate instrumental broadening and separate the intrinsic broadening. Compared to the Cauchy-Cauchy (CC) and Gaussian-Gaussian (GG) approximations, this is shown to give the best results. In addition, the reliability of the Scherrer equation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1–29.

    Article  CAS  Google Scholar 

  2. C.E. Krill and R. Birringer: Phil. Mag., 1998, vol. 77A, pp. 621–40.

    Google Scholar 

  3. P.G. Sanders, A.B. Witney, J.R. Weertman, R.Z. Valiev, and R.W. Siegel: Mater. Sci. Eng., 1995, vol. 204A, pp. 7–11.

    Google Scholar 

  4. H.H. Tian and M. Atzmon: Phil. Mag., 1999, vol. 79A, pp. 1769–86.

    Google Scholar 

  5. C.N.J. Wagner, E. Yang, and M.S. Boldrick: Nanostruct. Mater., 1996, vol. 7, pp. 1–11.

    Article  CAS  Google Scholar 

  6. E. Bonetti, L. Pasquini, and E. Sampaolesi: Nanostruct. Mater., 1998, vol. 10, pp. 437–48.

    Article  CAS  Google Scholar 

  7. K. Zhang, I.V. Alexandrov, and K. Lu: Nanostruct. Mater., 1997, vol. 9, pp. 347–50.

    Article  CAS  Google Scholar 

  8. R. Klemm, E. Thiele, C. Holste, J. Eckert, and N. Schell: Scripta Mater., 2002, vol. 46, pp. 685–90.

    Article  CAS  Google Scholar 

  9. D. Balzar and H. Ledbetter: J. Appl. Crystal., 1993, vol. 26, pp. 97–103.

    Article  Google Scholar 

  10. B.E. Warren: X-ray Diffraction, Dover Publications, New York, NY, 1990, ch. 13.

    Google Scholar 

  11. R.W. Rarnirez: The FFT Fundamentals and Concepts, Prentice-Hall, Englewood Cliffs, NJ, 1985, pp. 61–146.

    Google Scholar 

  12. H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, New York, NY, 1974, pp. 618–87.

    Google Scholar 

  13. T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–75.

    Article  Google Scholar 

  14. A.R. Stokes and A.J.C. Wilson: Proc. Phys. Soc. London, 1944, vol. 56, pp. 174–81.

    Article  CAS  Google Scholar 

  15. P. Scherrer: Nachr. Göttingen, 1918, vol. 2, pp. 98–100.

    Google Scholar 

  16. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  17. M. Mckeehan and B.E. Warren: J. Appl. Phys., 1953, vol. 24, pp. 52–56.

    Article  CAS  Google Scholar 

  18. R. Delhez, T.H. De Keijser, and E.J. Mittemeijer: Accuracy in Powder Diffraction, S. Block and C.R. Hubbard, eds., National Bureau of Standards Special Publication No. 567, NBS, Washington, DC, 1980, pp. 213–53.

    Google Scholar 

  19. C.N.J. Wagner: in Local Atomic Arrangements Studies by X-ray Diffraction, J.B. Cohen and J.E. Hilliard, eds., Gordon and Breach, New York, NY, 1966, pp. 219–69.

    Google Scholar 

  20. B.E. Warren: Progress in Metal Physics, B. Chalmers and R. King, eds., Pergamon, London, 1959, pp. 147–202.

    Google Scholar 

  21. J.B. Cohen and C.N.J. Wagner: J. Appl. Phys., 1962, vol. 33, pp. 2073–77.

    Article  CAS  Google Scholar 

  22. T. Ungár, S. Ott, P.G. Sanders, A. Borbély, and J.R. Weertman: Acta Mater., 1998, vol. 46, pp. 3693–99.

    Article  Google Scholar 

  23. D. Balzar: Defect and Microstructure Analysis by Diffraction, R.L. Snyder, J. Fiala, and H.J. Bunge, eds., Oxford, New York, NY, 1999, pp. 95–126.

    Google Scholar 

  24. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 938–44.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zhou, F. & Lavernia, E.J. On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metall Mater Trans A 34, 1349–1355 (2003). https://doi.org/10.1007/s11661-003-0246-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0246-2

Keywords

Navigation