Skip to main content
Log in

Recrystallization of a cold-rolled low-carbon steel by cold-plasma-discharge rapid annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new annealing technology has been developed by the authors in order to conduct fast steel annealing. This process consists of steel heating by cold-plasma discharge. It allows the opportunity for new annealing cycles with higher heating rates (up to 300 K/s), shorter soaking times, and controlled cooling rates, so that well-recrystallized samples have been achieved in less than several seconds of total process time. This article reports the influence of various parameters of the annealing cycle (heating rate, maximum annealing temperature, and cooling rate) on the recrystallization and properties of a cold-rolled low-carbon steel. This study shows that the annealing time can be significatively reduced using this new technology, compared to the industrial continuous annealing technology used today, to obtain equivalent metallurgical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Semiatin, I.M. Sukonnik, and V. Seetharaman: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2051–53.

    CAS  Google Scholar 

  2. D. Muljono, M. Ferry, and D.P. Dunne: 39th Mechanical Working Steel Processing Conf. Proc., ISS, Warrendale, PA, 1997, pp. 667–72.

    Google Scholar 

  3. T. Senuma: Recrystallization and Grain Growth—Proc. 1st Joint Int. Conf., G. Gottstein and D.A. Molodov, eds., Springer-Verlag, Aachen, 2001, pp. 1125–30.

    Google Scholar 

  4. S.E. Hinchliffe: PhD Thesis, University of Manchester Institute of Science and Technology, Manchester, United Kingdom, 1995, pp. 43–87.

    Google Scholar 

  5. H. Shi, M. Atkinson, and D. Dunne: in Recrystallisation ’90, T. Chandra, ed., TMS, Warrendale, PA, 1990, pp. 735–40.

    Google Scholar 

  6. M. Atkinson: Mater. Forum, 1993, vol. 17 (2), pp. 181–208.

    CAS  Google Scholar 

  7. W. Jolley: J. Iron Steel Inst. Jpn., 1967, vol. 205, pp. 321–28.

    Google Scholar 

  8. F. Emren, U.v. Schlippenbach, and K. Lücke: Mater. Sci. Technol., 1989, vol. 5 (3), pp. 238–48.

    CAS  Google Scholar 

  9. D. Muljono, M. Ferry, and D.P. Dunne: Mater. Sci. Eng., 2001, vol. A303, pp. 90–99.

    CAS  Google Scholar 

  10. I.L. Dillamore, C.J.E. Smith, and T.W. Watson: Met. Sci., 1967, vol. 1, pp. 49–54.

    Article  CAS  Google Scholar 

  11. J.J. Jonas, L.S. Toth, and T. Urabe: Mater. Sci. Forum, 1994, vols. 157–162, pp. 713–29.

    Google Scholar 

  12. W.B. Hutchinson: 16th Ris Int. Symp. on Materials Science 1995—Microstructural and Crystallographic Aspects of Recrystallization, N. Hansen, D.J. Jensen, Y.L. Liu, and B. Ralph, eds., Riso National Laboratory, Roskilde, 1995, pp. 105–17.

    Google Scholar 

  13. L. Kestens, K. Verbeken, and J.J. Jonas: Recrystallization and Grain Growth—Proc. 1st Joint Int. Conf., G. Gottstein and D.A. Molodov, eds., Springer-Verlag, Aachen, 2001, pp. 695–706.

    Google Scholar 

  14. P. Gordon and R.A. Vandermeer: Recrystallization, Grain Growth and Textures, ASM, & Cleveland, OH, 1965, pp. 209–11.

    Google Scholar 

  15. T. Urabe, J. Savoie, and J.J. Jonas: Physical Metallurgy of IF Steels, The Iron and Steel Institute of Japan, Tokyo, 1994, pp. 141–44.

    Google Scholar 

  16. K. Verbeken and L. Kestens: Recrystallization and Grain Growth—Proc. 1st Joint Int. Conf., G. Gottstein and D.A. Molodov, eds., Springer-Verlag, Aachen, 2001, pp. 1143–48.

    Google Scholar 

  17. L. Kestens and J.J. Jonas: Met. Mater., 1999, vol. 5 (5), pp. 419–27.

    Article  CAS  Google Scholar 

  18. L. Kestens and Y. Houbaert: Proc. 21st Riso Int. Symp. on Materials Science: Recrystallization—Fundamental Aspects and Relations to Deformation Microstructure, N. Hansen, X. Huang, D.J. Jensen, W. Pantleon, E.M. Lauridsen, T. Leffers, T.J. Sabin, and J.A. Wert, eds., Riso National Laboratory, Roskilde, 2000, pp. 379–84.

    Google Scholar 

  19. J. Stockemer: PhD Thesis, University of Brussels, Brussels, Belgium, 2001.

    Google Scholar 

  20. J. Stockemer and P. Vanden Brande: Recrystallization and Grain Growth—Proc. 1st Joint Int. Conf., G. Gottstein and D.A. Molodov, eds., Springer-Verlag, Aachen, 2001, pp. 1131–36.

    Google Scholar 

  21. F.J. Humpreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, United Kingdom, 1995, pp. 127–220.

    Google Scholar 

  22. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1965, pp. 489–95.

    Google Scholar 

  23. B. Thomas and M. Guttmann: in Le Livre de l’Acier, G. Béranger, G. Henry, and G. Sanz, Lavoisier, Paris, 1994, p. 159.

    Google Scholar 

  24. J. Gouzou, J. Wegria, and L. Habraken: CNRM, 1970, vol. 25, pp. 21–28.

    Google Scholar 

  25. M.R. Barnett: Iron Steel Inst. Jpn. Int., 1998, vol. 1, pp. 78–85.

    Google Scholar 

  26. W.B. Hutchinson: Acta Metall., 1989, vol. 37, pp. 1047–56.

    Article  CAS  Google Scholar 

  27. R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39 (4), pp. 129–72.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockemer, J., Vanden Brande, P. & Brande, P.V. Recrystallization of a cold-rolled low-carbon steel by cold-plasma-discharge rapid annealing. Metall Mater Trans A 34, 1341–1348 (2003). https://doi.org/10.1007/s11661-003-0245-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0245-3

Keywords

Navigation