Skip to main content

Advertisement

Log in

Mechanical measurements of passive film fracture on an austenitic stainless steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The initiation of fracture in passive films formed on a 304 stainless steel has been measured using a nanoindentation technique as well as bulk circumferentially notched tensile bars (CNTBs). The nanoindentation method was coupled with scanning probe microscopy to isolate individual grains that were free of any observable inclusions, so as to probe only the properties of the film upon the base alloy. The mechanical response of the film was measured while being anodically polarized in 0.1 M sulfuric acid with various halide concentrations, as well as with respect to the applied potential. The passive film strengthened as the applied potential increased in the passive regime, possibly due to film-thickness changes. In both the bulk and nanoscale tests, the passive film-fracture strength was found to decrease with increasing salt concentration in solution, which cannot be attributed to the uniform thinning of the passive film. The correlation between the bulk and nanoscale tests demonstrates that both methods are viable options of measuring the fracture of passive films on metals. Nanoindentation results are used to estimate the applied tensile stress at film fracture between 1 and 2 GPa for an anodically grown passive film on 304 stainless steel at 0 V vs that on Ag/AgCl in 0.1 pct NaCl-0.1 M sulfuric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.T. Burstein and P.I. Marshall: Corr. Sci., 1983, vol. 23, pp. 125–37.

    Article  CAS  Google Scholar 

  2. H.C. Brookes, J.W. Bayles, and F.J. Grahm: J. Appl. Electrochem., 1990, vol. 20, pp. 223–30.

    Article  CAS  Google Scholar 

  3. G.T. Burstein and G. Gao: J. Electrochem. Soc., 1991, vol. 138, pp. 2627–30.

    Article  CAS  Google Scholar 

  4. G.S. Frankel, B.M. Rush, C.V. Jahnes, C.E. Farrell, A.J. Davenport, and H.S. Issacs: J. Electrochem. Soc., 1991, vol. 138, pp. 643–44.

    Article  CAS  Google Scholar 

  5. D.G. Kolman and J.R. Scully: J. Electrochem. Soc., 1995, vol. 142, pp. 2179–88.

    Article  CAS  Google Scholar 

  6. G.S. Frankel, C.V. Jahnes, V. Brusic, and A.J. Davenport: J. Electrochem. Soc., 1995, vol. 142, pp. 2290–95.

    Article  CAS  Google Scholar 

  7. J.C. Nelson and R.A. Oriani: Corr. Sci., 1993, vol. 34, pp. 307–26.

    Article  CAS  Google Scholar 

  8. S.F. Bubar and D.A. Vermilyea: J. Electrochem. Soc., 1967, vol. 114, pp. 882–85.

    Article  CAS  Google Scholar 

  9. R.M. Latanision and R.W. Staehle: Acta Metall., 1969, vol. 17, pp. 307–19.

    Article  CAS  Google Scholar 

  10. S.E. Harvey, P.G. Marsh, and W.W. Gerberich: Acta Metall. Mater., 1994, vol. 42, pp. 3493–502.

    Article  CAS  Google Scholar 

  11. E.A. Repetto and M. Ortiz: Acta. Mater., 1997, vol. 45, pp. 2577–95.

    Article  CAS  Google Scholar 

  12. T. Haruna, R. Toyota, and T. Shibata: Corr. Sci., 1997, vol. 39, pp. 1873–82.

    Article  CAS  Google Scholar 

  13. M. Seo, M. Chiba, and K. Suzuki: J. Electroanal. Chem., 1999, vol. 473, pp. 49–53.

    Article  CAS  Google Scholar 

  14. J.W. Schultze and M.M. Lohrengel: Electrochim. Acta, 2000, vol. 45, pp. 2499–513.

    Article  CAS  Google Scholar 

  15. D.G. Kolman, M.A. Gaudett, and J.R. Scully: J. Electrochem. Soc., 1998, vol. 145, pp. 1829–39.

    Article  CAS  Google Scholar 

  16. D.F. Bahr, M. Pang, D. Rodriguez-Marek, and C.H. Johnson: in Chemistry and Electrochemistry of Stress Corrosion Cracking: A Symposium Honoring the Contributions of R.W. Staehle, R.H. Jones, ed., TMS, Warrendale, PA, 2001, pp. 353–61.

    Google Scholar 

  17. M. Pang and D.F. Bahr: J. Mater. Res., 2001, vol. 16, pp. 2634–43.

    CAS  Google Scholar 

  18. A.B. Mann and J.B. Pethica: Langmuir, 1996, vol. 12, pp. 4583–86.

    Article  CAS  Google Scholar 

  19. H.L. Ewalds and R.J.H. Wanhill: Fracture Mechanics, Edward Arnold, London, 1989, p. 51.

    Google Scholar 

  20. M. Seo, M. Chib, and K. Suzuki: J. Electroanalytical Chem., 1999, vol. 473, pp. 49–53.

    Article  CAS  Google Scholar 

  21. D.F. Bahr, J.C. Nelson, N. Tymiak and W.W. Gerberich: J. Mater. Res., 1997, vol. 12, pp. 3345–54.

    CAS  Google Scholar 

  22. D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Acta Mater., 1998, vol. 46, pp. 3605–17.

    Article  CAS  Google Scholar 

  23. S.A. Syed Asif and J.B. Pethica: Phil. Mag. A, 1997, vol. 76, pp. 1105–18.

    Google Scholar 

  24. P. Marcus and I. Olefjord: Corr. Sci., 1988, vol. 28, pp. 589–602.

    Article  CAS  Google Scholar 

  25. A. Rossi, B. Elsener, G. Hahner, M. Textor, and N.D. Spencer: Surf. Interface Anal., 2000, vol. 29, pp. 460–67.

    Article  CAS  Google Scholar 

  26. M. Pang, D.E. Eakins, M.G. Norton, and D.F. Bahr: Corrosion, 2001, vol. 57, pp. 523–31.

    Article  CAS  Google Scholar 

  27. V. Vignal, J.M. Olive, and D. Desjardins: Corr. Sci., 1999, vol. 41, pp. 869–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Marek, D., Bahr, D.F. & Pang, M. Mechanical measurements of passive film fracture on an austenitic stainless steel. Metall Mater Trans A 34, 1291–1296 (2003). https://doi.org/10.1007/s11661-003-0240-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0240-8

Keywords

Navigation