Skip to main content
Log in

On the application of the additivity rule in pearlitic transformation in low alloy steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It is considered that the transformed fraction of pearlite from the decomposition of austenite contains contributions from both nucleation and growth transformed fraction and that they can be calculated using classic nucleation theory and the diffusional growth equation. The present study demonstrated that for the pearlite transformation in low alloy steels, the fraction of pearlite formed from nucleation is additive and that from growth is not. This suggests that additivity from isothermal data is not always valid in continuous cooling transformation. Only in special cases, i.e., when the ratio of rate of nucleation and rate of growth remains constant, does the pearlite transformation obey the additivity rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Scheil: Arch. Eisenhuttenwes., 1935, vol. 8, pp. 565–67.

    CAS  Google Scholar 

  2. S. Steinberg: Metallurgy, 1938, vol. 13, pp. 7–12.

    Google Scholar 

  3. T. Réti and I. Felde: Computational Mater. Sci., 1999, vol. 15, pp. 466–82.

    Article  Google Scholar 

  4. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1975.

    Google Scholar 

  5. P.K. Agarwal and J.K. Brimacombe: Metall. Trans. B, 1981, vol. 12B, pp. 121–33.

    CAS  Google Scholar 

  6. J.S. Kirkaldy and R.C. Sharma: Scripta Metall., 1982, vol. 16, pp. 1193–98.

    Article  CAS  Google Scholar 

  7. M. Umemoto, K. Horiuchi, and I. Tamura: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 690–95.

    CAS  Google Scholar 

  8. E.B. Hawbolt, B. Chau, and J.K. Brimacombe: Metall. Trans. A, 1983, vol. 14A, pp. 1803–15.

    CAS  Google Scholar 

  9. R.G. Kamat, E.B. Hawbolt, L.C. Brown, and J.K. Brimacombe: Metall. Trans. A, 1992, vol. 23A, pp. 2469–80.

    CAS  Google Scholar 

  10. P.C. Campbell, E.B. Thomson, and J.K. Brimacombe: Metall. Trans. A, 1991, vol. 22A, pp. 2779–90.

    CAS  Google Scholar 

  11. E.B. Hawbolt, B. Chau, and J.K. Brimacombe: Metall. Trans. A, 1985, vol. 16A, pp. 565–78.

    CAS  Google Scholar 

  12. M.B. Kuban, R. Jayaraman, E.B. Hawbolt, and J.K. Brimacombe: Metall. Trans. A, 1986, vol. 17A, pp. 1493–503.

    CAS  Google Scholar 

  13. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550–95.

    Google Scholar 

  14. J.S. Kirkaldy and E.A. Baganis: Metall. Trans. A, 1978, vol. 9A, pp. 495–501.

    CAS  Google Scholar 

  15. I.A. Wierszyllowski: Metall. Trans. A, 1991, vol. 22A, pp. 993–99.

    CAS  Google Scholar 

  16. E.J. Mittemeijer: J. Mater. Sci., 1992, vol. 27, pp. 3977–87.

    Article  CAS  Google Scholar 

  17. T. Réti, T. Bell, Y. Sun, and A. Bloyce: Mater. Sci. Forum, 1994, vols. 163–165, pp. 673–80.

    Article  Google Scholar 

  18. T.T. Pham, E.B. Hawbolt, and J.K. Brimacombe: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1987–92.

    CAS  Google Scholar 

  19. D. Hömberg: IMA J. Appl. Math., 1995, vol. 54, pp. 31–57.

    Article  Google Scholar 

  20. D. Hömberg: Acta Mater., 1996, vol. 44, pp. 4375–85.

    Article  Google Scholar 

  21. M. Lusk and H.J. Jou: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 287–91.

    Article  CAS  Google Scholar 

  22. T. Réti, L. Horvath, and I. Felde: J. Mater. Eng. Performance, 1997, vol. 6, pp. 433–42.

    Google Scholar 

  23. M.H. Todinov: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 269–73.

    CAS  Google Scholar 

  24. T.Y. Hsu (Xu Zuyao): Theory of Phase Transformation, Science Press, Beijing, 2000, p. 423.

    Google Scholar 

  25. Y.T. Zhu and T.C. Lowe: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 675–82.

    CAS  Google Scholar 

  26. J.W. Christian: in Physical Metallurgy, 1st ed., R.W. Cahn, ed., North-Holland Publishing Company, Amsterdam, 1977, pp. 479–580.

    Google Scholar 

  27. A.A. Popof and L.E. Popofa: TTT & CCT Diagrams of Steels, Mechanical Engineering Publisher, Mashgiz, Russia, 1961.

    Google Scholar 

  28. G.J. Jones and R. Trivedi: J. Cryst. Growth, 1975, vol. 29, p. 155.

    Article  CAS  Google Scholar 

  29. G.J. Jones and R. Trivedi: J. Appl. Phys., 1971, vol. 42, p. 4299.

    Article  CAS  Google Scholar 

  30. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  31. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J.S., Hsu, T.Y. & Chang, H.B. On the application of the additivity rule in pearlitic transformation in low alloy steels. Metall Mater Trans A 34, 1259–1264 (2003). https://doi.org/10.1007/s11661-003-0236-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0236-4

Keywords

Navigation