Skip to main content
Log in

Aging response of the young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Alloys for implant devices require improved strength but a reduced Young’s modulus, in order to become mechanically more compatible with adjacent bone tissues. In this study, a new metastable β-type titanium alloy, Ti-29Nb-13Ta-4.6Zr (wt pct), was subjected to aging treatment to produce different microstructures, and the resulting mechanical properties, including the Young’s modulus, were measured. The Young’s modulus of this alloy is found to be sensitive to microstructures generated by various heat treatments. For microstructures varying from (α + β) to (α + β + ω) and (β + ω), the Young’s modulus increases with an accompanying increase in tensile strength and hardness, but decreases in ductility. The (β + ω) microstructure has a low strength, high modulus, and poor ductility and cannot be used for biomedical applications. For an (α + β) microstructure, the volume fraction of the phases is shown to be the main factor that determines the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Sumner and J.O. Galante: Clin. Orthop. Relat. Res., 1992, vol. 274, pp. 202–12.

    Google Scholar 

  2. M. Long and H.J. Rack: Biomaterials, 1998, vol. 19, pp. 1621–39.

    Article  CAS  Google Scholar 

  3. M. Niinomi: Mater. Sci. Eng. A, 1998, vol. 243A, pp. 231–36.

    Google Scholar 

  4. J.C. Fanning: in Beta Titanium Alloys in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, TMS, Warrendale, PA, 1993, p. 411.

    Google Scholar 

  5. Y. Song, R. Yang, D. Li, W.T. Wu, and Z.X. Guo: Mater. Sci. Eng. A, 1999, vol. 260A, pp. 269–74.

    Google Scholar 

  6. P.G. Laing, A.J. Fergosun, and E.S. Hodge: J. Biomed. Mater. Res., 1967, vol. 1, p. 135.

    Article  CAS  Google Scholar 

  7. K. Mishra, J.A. Davidson, R.A. Poggie, P. Kovacs, and T.J. Fitzgerald: in Medical Application of Titanium and Its Alloys: The Materials and Biological Issues, ASTM STP 1272, J.E. Lemons, ed., ASTM, West Conshohocken, PA, 1996, p. 96.

    Google Scholar 

  8. X. Tang, T. Ahmed, and H.J. Rack: J. Mater. Sci., 2000, vol. 35, pp. 1805–11.

    Article  CAS  Google Scholar 

  9. M.A. Imam and C.R. Feng: in Advances in the Science and Technology of Titanium Alloy Processing, I. Weiss, R. Srinivasan, P.J. Bania, D. Eylon, and S.L. Semiatin, eds., TMS, Warrendale, PA, 1997, p. 435.

    Google Scholar 

  10. H. Ledbetter and S.Z. Datta: Z. Metallkd., 1992, vol. 83, pp. 195–98.

    CAS  Google Scholar 

  11. Z. Fan, P. Tsakiropoulos, and A.P. Miodownik: Mater. Sci. Technol., 1993, vol. 9, pp. 863–68.

    CAS  Google Scholar 

  12. Z. Fan, A.P. Miodownik, and P. Tsakiropoulos: Mater. Sci. Technol., 1993, vol. 9, pp. 1094–100.

    CAS  Google Scholar 

  13. R.Z. Boccaccini: Z. Metallkd., 1997, vol. 88, pp. 23–26.

    CAS  Google Scholar 

  14. Y.L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y.L. Zhou, R. Yang, and A. Suzuki: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3137–44.

    CAS  Google Scholar 

  15. E.W. Collings: The Physical Metallurgy of Titanium Alloys, ASM, Metals Park, OH, 1984.

    Google Scholar 

  16. Z. Fan: Scripta Metall. Mater., 1993, vol. 29, pp. 1427–32.

    Article  CAS  Google Scholar 

  17. Introduction of Young’s Modulus Measure System (JE-RT 3), Nippon Techno-Plus Co., Ltd., Japan, p. 7.

  18. S. Kajiwara: Metall. Trans. 4, 1986, vol. 17A, pp. 1693–702.

    CAS  Google Scholar 

  19. Y.K. Lee and C.S. Choi: Metall. Trans. A, 2000, vol. 31A, pp. 355–60.

    CAS  Google Scholar 

  20. T. Grosdidier, Y. Combres, E. Gautier, and M.J. Philippe: Metall. Trans. A. 2000, vol. 31A, pp. 1095–106.

    CAS  Google Scholar 

  21. Y.T. Lee and G. Welsch: Mater. Sci. Eng. A, 1990, vol. 128A, pp. 77–89.

    Google Scholar 

  22. G. Ondracek: Powder Metall. Phys. Ceram., 1987, vol. 3, p. 205.

    Google Scholar 

  23. S. Ahmed and F.R. Jones: J. Mater. Sci., 1990, vol. 25, pp. 4933–42.

    Article  CAS  Google Scholar 

  24. J. Llorca, M. Elices, and Y. Termonia: Acta Mater., 2000, vol. 48, pp. 4589–97.

    Article  CAS  Google Scholar 

  25. L.J. Broutman and R.H. Krock: Modern Composite Materials, Addison-Wesley, Reading, MA, 1963.

    Google Scholar 

  26. K. Cho and J. Gurland: Metall. Trans. A, 1988, vol. 19A, pp. 2027–40.

    CAS  Google Scholar 

  27. S. Ankem and H. Margolin: Metall. Trans. A, 1986, vol. 17A, pp. 2209–26.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Y.L., Yang, R., Niinomi, M. et al. Aging response of the young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications. Metall Mater Trans A 34, 1007–1012 (2003). https://doi.org/10.1007/s11661-003-0230-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0230-x

Keywords

Navigation