Skip to main content

Advertisement

Log in

Effects of test temperature and grain size on the charpy impact toughness and dynamic toughness (K ID ) of polycrystalline niobium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of changes in test temperature (−196 °C to 25 °C) and grain size (40 to 165 µm) on the dynamic cleavage fracture toughness (K ID ) and Charpy impact toughness of polycrystalline niobium (Nb) have been investigated. The ductile-to-brittle transition was found to be affected by both changes in grain size and the severity of stress concentration (i.e., notch vs fatigue-precrack). In addition to conducting impact tests on notched and fatigue-precracked Charpy specimens, extensive fracture surface analyses have been performed in order to determine the location of apparent cleavage nucleation sites and to rationalize the effects of changes in microstructure and experimental variables on fracture toughness. Existing finite element analyses and the stress field distributions ahead of stress concentrators are used to compare the experimental observations with the predictions of various fracture models. The dynamic cleavage fracture toughness, K ID , was shown to be 37±4 MPa√m and relatively independent of grain size (i.e., 40 to 105 µm) and test temperature over the range −196 °C to 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Mendiratta and D. Dimiduk: Scripta Metall. Mater., 1991, vol. 25, pp. 237–45.

    Article  CAS  Google Scholar 

  2. M. Mendiratta, D. Dimiduk, and J.J. Lewandowski: Metall. Trans., A1999, vol. 22A, pp. 1573–84.

    Google Scholar 

  3. J.D. Rigney and J.J. Lewandowski: Metall. Mater. Trans., 1996, vol. 27A, pp. 3292–306.

    CAS  Google Scholar 

  4. J. Kajuch, J. Short, and J.J. Lewandowski: Acta Metall., A, 1995, vol. 43, pp. 1955–67.

    Article  CAS  Google Scholar 

  5. W.A. Zinsser, Jr. and J.J. Lewandowski: Metall. Mater. Trans., A1998, vol. 29A, pp. 1749–57.

    Article  CAS  Google Scholar 

  6. B.P. Bewlay, J.J. Lewandowski, and M.R. Jackson: JOM, 1997, vol. 49, pp. 44–45.

    CAS  Google Scholar 

  7. A.V. Samant and J.J. Lewandowski: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 389–99.

    Article  CAS  Google Scholar 

  8. A.V. Samant and J.J. Lewandowski: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2297–307.

    Article  CAS  Google Scholar 

  9. M.A. Adams, A.C. Roberts, and R.E. Smallman: Acta Metall., 1960, vol. 8, pp. 328–37.

    Article  CAS  Google Scholar 

  10. A.A. Johnson: Acta Metall., 1960, vol. 8, pp. 737–40.

    CAS  Google Scholar 

  11. A.T. Churchman: J. Inst. Met., 1960, vol. 88, pp. 221–22.

    CAS  Google Scholar 

  12. T.L. Briggs and J.D. Campbell: Acta Metall., 1972, vol. 20, pp. 711–24.

    Article  CAS  Google Scholar 

  13. Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1994, vol. 03.01.

  14. J. Srawley and W. Brown: ASTM Special Technical Publication 410, ASTM, Philadelphia, PA, 1966.

    Google Scholar 

  15. J.J. Lewandowski and A.W. Thompson: Metall Trans. A, 1986, vol. 17A, pp. 1769–86.

    CAS  Google Scholar 

  16. D. Padhi: Case Western Reserve University, Cleveland, OH, unpublished research, 2000.

  17. T.L. Anderson: Fracture Mechanics—Fundamentals and Applications, 2nd ed., CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  18. S. Nemat-Nasser and W. Guo: Mater. Sci. Eng. A, 1999, vol. 284, pp. 202–10.

    Google Scholar 

  19. R. Sandstrom and Y. Bergstrom: Met. Sci., 1984, vol. 18, pp. 177–86.

    Article  Google Scholar 

  20. P. Ludwik: Z. Ver. Deut. Ing., 1927, vol. 71, pp. 1532–36.

    Google Scholar 

  21. A.H. Cottrell: Trans. TMS-AIME, 1958, vol. 212, pp. 192–203.

    CAS  Google Scholar 

  22. J.W. Taylor: J. Inst. Met., 1958, vol. 86, pp. 456–63.

    CAS  Google Scholar 

  23. J.F. Knott: J. Iron Steel Inst., 1966, vol. 204, pp. 104–11.

    CAS  Google Scholar 

  24. R.W. Armstrong, G.R. Irwin, and X.J. Zhang: George R. Irwin Symp. Cleavage Fracture, K. Chan, ed., TMS, Warrendale, PA, 1997, pp. 51–58.

    Google Scholar 

  25. R.W. Armstrong: Phil. Mag., 1964, vol. 9, pp. 1063–70.

    CAS  Google Scholar 

  26. R.W. Armstrong: Metall. Trans., 1970, vol. 1, pp. 1169–76.

    CAS  Google Scholar 

  27. N.J. Petch: Acta Metall., 1986, vol. 34, pp. 1387–95.

    Article  CAS  Google Scholar 

  28. J.F. Knott: Fundamentals of Fracture Mechanics, Butterworths, Boston, MA, 1979.

    Google Scholar 

  29. A.P. Green and B.B. Hundy: J. Mech. Phys. Solids, 1956, vol. 4, pp. 128–44.

    Article  Google Scholar 

  30. G.Z. Wang, J.H. Chen, and J.G. Wang: Int. J. Fracture, 2003, in press.

  31. J.R. Griffiths and D.R.J. Owen: J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  32. R. Hill: Mathematical Theory of Plasticity, Oxford University Press, London, 1950.

    Google Scholar 

  33. D.R.J. Owen, G.C. Nayak, A.P. Kfouri, and J.R. Griffiths: Int. J. Num. Meth. Eng., 1973, vol. 6, pp. 63–73.

    Article  Google Scholar 

  34. D.J. Alexander, J.J. Lewandowski, and A.W. Thompson: J. Mech. Phys. Solids, 1986, vol. 34, pp. 433–54.

    Article  Google Scholar 

  35. J.M. Alexander and T.J. Komoly: J. Mech. Phys. Solids, 1962, vol. 10, pp. 265–75.

    Article  Google Scholar 

  36. T.R. Wilshaw and P.L. Pratt: J. Mech. Phys. Solids, 1966, vol. 14, pp. 7–19.

    Article  Google Scholar 

  37. R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  CAS  Google Scholar 

  38. R.O. Ritchie, B. Francis, and W.L. Server: Metall. Trans. A, 1976, vol. 7A, pp. 831–38.

    CAS  Google Scholar 

  39. D.M. Tracey: ASME J. Eng. Mater. Technol., 1976, vol. 98, pp. 146–51.

    Google Scholar 

  40. D. Padhi and J.J. Lewandowski: Case Western Reserve University, Cleveland, OH, unpublished research, 2002.

  41. J.W. Hutchinson: J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  42. J.R. Rice and G.R. Rosengren: J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padhi, D., Lewandowski, J.J. Effects of test temperature and grain size on the charpy impact toughness and dynamic toughness (K ID ) of polycrystalline niobium. Metall Mater Trans A 34, 967–978 (2003). https://doi.org/10.1007/s11661-003-0226-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0226-6

Keywords

Navigation